Hypothesis wrapper for functional models
Hypothesis.Rd
Construct a hypothesis object that wraps a user-supplied function with minimal metadata so it can be visualized like a learner.
R6 class wrapping a user-supplied function plus minimal metadata so it can be visualized like a learner on 1D or 2D inputs.
Arguments
- fun
(`function`) Function defining the hypothesis. Accepted signatures: - 1D: `fun(x, ...)` or `fun(data)` where `data` is a data.frame with one predictor column - 2D: `fun(x, y, ...)` or `fun(data)` where `data` is a data.frame with two predictor columns
- type
(`character(1)`) One of "regr" or "classif".
- predictors
(`character()`) Names of the predictor columns. Length must be 1 or 2.
- link
(`character(1)`) Link for classif outputs: "identity" (default) or "logit". For regression, only "identity" is used.
- domain
(`list`|`NULL`) Named list with limits per predictor, e.g., `list(x = c(-3, 3))` for 1D or `list(x = c(-3,3), y = c(-3,3))` for 2D. Used when no Task is provided.
- levels
(`character(2)`|`NULL`) Class labels for binary classification.
Public fields
fun
(`function`) User-provided function implementing the hypothesis.
type
(`character(1)`) Prediction type, one of "regr" or "classif".
predictors
(`character()`) Names of predictor columns (length 1 or 2).
input_dim
(`integer(1)`) Number of predictors, derived from `predictors`.
link
(`character(1)`) Link for classif output: "identity" or "logit".
domain
(`list`|`NULL`) Named list with limits per predictor for plotting without a Task.
levels
(`character(2)`|`NULL`) Class labels for binary classification.
Methods
Method new()
Create a new Hypothesis instance
Usage
Hypothesis$new(
fun,
type,
predictors,
link = "identity",
domain = NULL,
levels = NULL
)
Arguments
fun
(`function`) See class field `fun`.
type
(`character(1)`) See class field `type`.
predictors
(`character()`) See class field `predictors`.
link
(`character(1)`) See class field `link`.
domain
(`list`|`NULL`) See class field `domain`.
levels
(`character(2)`|`NULL`) See class field `levels`.
Method predict()
Predict on newdata