Scenarios & Instances

Scenarios

The following table provides an overview over Scenarios included in YAHPO Gym and included Instances:

Scenario Overview

Scenario

Search Space

# Instances

Target Metrics

Fidelity

H

Source

rbv2_super

38D: Mixed

103

9: perf(6) + rt(2) + mem

fraction

[1]

rbv2_svm

6D: Mixed

106

9: perf(6) + rt(2) + mem

fraction

[1]

rbv2_rpart

5D: Mixed

117

9: perf(6) + rt(2) + mem

fraction

[1]

rbv2_aknn

6D: Mixed

118

9: perf(6) + rt(2) + mem

fraction

[1]

rbv2_glmnet

3D: Mixed

115

9: perf(6) + rt(2) + mem

fraction

[1]

rbv2_ranger

8D: Mixed

119

9: perf(6) + rt(2) + mem

fraction

[1]

rbv2_xgboost

14D: Mixed

119

9: perf(6) + rt(2) + mem

fraction

[1]

nb301

34D: Categorical

1

2: perf(1) + rt(1)

epoch

[2], [3]

lcbench

7D: Numeric

34

6: perf(5) + rt(1)

epoch

[4], [5]

iaml_super

28D: Mixed

4

12: perf(4) + inp(3) + rt(2) + mem(3)

fraction

[6]

iaml_rpart

4D: Numeric

4

12: perf(4) + inp(3) + rt(2) + mem(3)

fraction

[6]

iaml_glmnet

2D: Numeric

4

12: perf(4) + inp(3) + rt(2) + mem(3)

fraction

[6]

iaml_ranger

8D: Mixed

4

12: perf(4) + inp(3) + rt(2) + mem(3)

fraction

[6]

iaml_xgboost

13D: Mixed

4

12: perf(4) + inp(3) + rt(2) + mem(3)

fraction

[6]

  • mixed = numeric and categorical hyperparameters

  • perf = performance measures

  • rt = train/predict time

  • mem = memory consumption

  • inp = interpretability measures

  • H = Hierarchical search space

Note that the fidelity parameter is not included in the search space dimensionality.

Original data sources are given by:

  • [1] Binder M., Pfisterer F. & Bischl B. (2020). Collecting Empirical Data About Hyperparameters for Data Driven AutoML. 7th ICML Workshop on Automated Machine Learning.

  • [2] Siems, J., Zimmer, L., Zela, A., Lukasik, J., Keuper, M., & Hutter, F. (2020). NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search. arXiv preprint arXiv:2008.09777, 11.

  • [3] Zimmer, L. (2020). nasbench301_full_data. figshare. Dataset. https://doi.org/10.6084/m9.figshare.13286105.v1, Apache License, Version 2.0.

  • [4] Zimmer, L., Lindauer, M., & Hutter, F. (2021). Auto-Pytorch: Multi-Fidelity Metalearning for Efficient and Robust AutoDL. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(9), 3079-3090.

  • [5] Zimmer, L. (2020). data_2k_lw.zip. figshare. Dataset. https://doi.org/10.6084/m9.figshare.11662422.v1, Apache License, Version 2.0.

  • [6] None, simply cite Pfisterer, F., Schneider, L., Moosbauer, J., Binder, M., & Bischl, B. (2022). YAHPO Gym - An Efficient Multi-Objective Multi-Fidelity Benchmark for Hyperparameter Optimization. In International Conference on Automated Machine Learning.

Please make sure to always also cite the original data sources as YAHPO Gym would not have been possible without them!

In yahpo_gym, there is a Configuration object for each scenario.

A list of all available scenarios can be obtained as follows:

from yahpo_gym.configuration import cfg
print(cfg())

Instances

YAHPO Gym instances are evaluations of an ML algorithm (scenario) with a given set of hyperparameters on a specific dataset. Currently, the rbv2_*, lcbench, and iaml_* scenarios contain instances based on OpenML datasets. For rbv2_* and iaml_* scenarios, the task_id parameter of the ConfigSpace corresponds to the OpenML dataset identifier (i.e., this is the dataset id and not the task id). To query meta information, use https://www.openml.org/d/<dataset_id>. For the lcbench scenario, the OpenML_task_id parameter of the ConfigSpace directly corresponds to OpenML tasks identifier (i.e., this is the task id and not the dataset id). To query meta information, use https://www.openml.org/t/<task_id>.

Scenario Overview

Scenario

Instances

lcbench

168868,167152,167200,168330,189862,189909,167181,167149,126026,168910,167190,189906,146212,189865,167168,168329,189873,34539,189866,167104,189908,3945,168335,126025,189354,126029,167161,167184,189905,168908,167185,167201,7593,168331

nb301

CIFAR10

rbv2_svm

40978,40966,42,377,458,307,1515,1510,16,334,50,40984,40975,1479,54,15,12,1468,40496,1501,188,40994,1462,1063,40979,469,22,23381,29,312,6332,40981,470,40499,1480,18,14,11,1494,1049,37,41157,31,1068,38,40670,23,40982,40900,181,1050,1464,40983,28,1487,46,1067,3,41212,1056,1497,182,375,32,41143,4154,60,24,44,41146,40498,41156,1475,40701,1485,41216,1489,4135,1040,4534,4538,1476,1457,1053,4134,300,1478,40536,1111,1461,41142,1220,41163,41138,1486,41164

rbv2_ranger

41157,40984,54,1464,181,40496,1494,1050,40975,40994,15,1468,1462,1063,1510,334,377,11,1068,18,40982,37,469,1487,23,1515,50,458,1480,1067,40966,40983,1049,12,1497,40979,31,42,182,40900,1056,28,1501,40498,16,1479,14,60,40499,44,41146,41156,4154,40981,22,32,1489,1040,3,41216,38,312,46,29,375,1475,40685,1485,6332,470,40701,41143,41278,41027,24,1457,307,40670,188,4538,6,23381,1053,41163,41165,4134,41212,1478,40536,41142,1476,41161,4534,41159,40978,41164,300,1486,1111,1220,151,41138,40927,4135,41166,1590,4541,1461,40668,23517,41162,23512,41168,41150

rbv2_rpart

1111,1486,41164,1478,182,40979,40670,40536,300,4538,4154,1040,41138,41212,1468,375,1476,1485,4134,22,4534,1068,1479,40978,31,470,11,37,1475,16,24,377,18,40966,40984,23381,1497,40975,1056,458,1501,1063,41162,41142,40900,307,15,41156,14,3,1494,1067,181,44,41163,40983,38,42,40994,4135,312,1053,29,1510,40701,60,1462,1515,1487,50,41146,6332,40498,41143,1489,54,46,23,40982,32,28,1049,1464,12,40499,1050,1590,41161,1457,40981,41159,334,1480,41165,40496,469,40927,41157,188,23512,1461

rbv2_glmnet

41156,38,40701,60,24,469,37,23381,15,1464,29,40981,11,4534,40978,40994,458,312,1063,1489,3,1068,1510,18,6332,23,41143,470,1462,4538,44,1067,1053,31,1497,41146,40983,1494,41212,1040,50,41157,40984,40536,40900,1050,54,1485,1487,40496,1468,40975,1049,1480,181,375,40982,1475,1461,4154,334,377,1590,40966,1515,16,40979,1056,22,182,188,1501,40498,4541,12,14,40499,1486,42,32,23512,28,307,1479,46,41278,4134,40670,41162,4135,41159,40668,41161,41142,1111,41138,1478,1476

rbv2_xgboost

3,54,38,41278,41156,42,60,41161,375,4154,41216,41162,32,1468,46,1479,50,1497,40982,1461,41143,41146,40499,300,4534,6332,4135,14,41157,12,22,40496,1478,29,40978,312,40670,469,1476,1487,4134,1590,15,40994,41212,188,1501,470,377,1515,181,1486,18,458,40975,40498,1050,41142,1489,4541,40979,1485,23,1040,24,1480,40701,40966,41159,1049,44,1068,40900,1464,31,4538,23381,40981,1067,1510,182,37,40983,307,1475,1494,16,41163,11,1111,334,1063,1053,41164,40984,1056,41138,40536,1462,28,40668,41165,1457,1220,41150,40927,23512,151,41166

rbv2_aknn

469,181,40496,1464,1462,11,334,40981,42,1480,18,40994,1063,1068,1510,15,54,50,23381,307,23,37,29,470,40975,188,31,377,6332,22,16,14,182,375,1501,1515,1475,60,1497,4538,12,40979,40499,300,28,1479,1053,32,41143,1468,312,41212,458,1476,1494,40984,1049,4134,4534,1478,1050,40966,40982,41156,1067,1485,40900,40498,1487,1489,40983,46,40536,1056,40670,38,44,41146,40701,3,1457,1040,41142,1220,41164,4154,41278,24,1486,41163,40978,41138,41157,1111,41159,41162,41161,41165,1461

rbv2_super

42,377,40966,1510,458,54,334,40975,15,1462,50,1515,40496,40994,469,40984,1063,40978,307,16,1468,11,18,40979,12,1479,1501,37,1480,1464,1068,40981,181,22,29,1494,23381,31,23,188,470,312,14,6332,1049,40499,41157,1050,40982,1487,40900,40983,38,1067,28,1497,182,3,40670,60,1056,46,375,44,41156,41212,4154,41146,32,41143,24,1489,40498,1475,40701,1040,1485,4538,4534,1053,40536,4134,1478,1476,1486,41142,1111,41138,1461

iaml_ranger

1489,41146,40981,1067

iaml_rpart

41146,1489,40981,1067

iaml_glmnet

40981,41146,1489,1067

iaml_xgboost

41146,1489,1067,40981

iaml_super

41146,1489,40981,1067

A list of available instances can be obtained from the instances slot after instantiating the BenchmarkSet.

from yahpo_gym import BenchmarkSet
BenchmarkSet("lcbench").instances

Users can now instantiate a Benchmark or config with this <ID>, e.g. using cfg(“<ID>”).