Objective dictionary
dict_objective.RdLookup table for reusable Objective definitions. The dictionary ships with
vistool and comes pre-populated with regularized regression objectives as
well as a selection of benchmark test functions when the optional
TestFunctions package is available. New objectives can be registered at
runtime via mlr3misc::Dictionary methods such as $add().
Format
A mlr3misc::Dictionary where each entry is an Objective instance.
See also
obj() for convenient retrieval.
Examples
dict_objective$get("TF_branin")
#> <Objective>
#> Public:
#> add_log_fun: function (l, label)
#> archive: active binding
#> assert_x: function (x, ...)
#> clear_archive: function ()
#> clone: function (deep = FALSE)
#> eval: function (x)
#> eval_store: function (x)
#> get_transform: function ()
#> grad: function (x)
#> hess: function (x)
#> id: TF_branin
#> initialize: function (id, fun, label = "f", xdim, lower = NA, upper = NA,
#> label: branin
#> log_funs: active binding
#> lower: -5 0
#> minimize: TRUE
#> set_transform: function (transform, test = TRUE)
#> transform_id: active binding
#> upper: 10 15
#> xdim: active binding
#> Private:
#> check_transform_domain: function (value)
#> ensure_transform_initialized: function ()
#> eval_base_value: function (x)
#> get_transform_id: function ()
#> grad_base_value: function (x)
#> hess_base_value: function (x)
#> p_archive: data.table, data.frame
#> p_fargs: list
#> p_fun: function (x, a = 1, b = 5.1/(4 * pi^2), cc = 5/pi, r = 6, s = 10,
#> p_gradient: NULL
#> p_gradient_fallback: function (x, ...)
#> p_hessian: NULL
#> p_hessian_fallback: function (x, ...)
#> p_label_base: branin
#> p_log_funs: list
#> p_transform: objective_transform
#> p_xdim: 2
#> p_xtest: 0 0
#> validate_transform: function (transform)