Literature
The course material covers all exam-relevant topics in a quite self-contained manner. For more in-depth study, we recommend the following literature.
Helpful References for Prerequisites
- M. Deisenroth, A. Faisal, C. Ong. Mathematics for Machine Learning. URL
- H. Wickham, G. Grolemund. R for Data Science. URL
- Introductory R course on datacamp.com URL
Mathematical & Statistical Theory
- G. Strang. Linear Algebra and Learning from Data. Cambridge University Press, 2019. Serious course on matrices and applied linear algebra.
- K. B. Petersen, M. S. Pedersen, The Matrix Cookbook URL
- J. Watt, R. Borhani, A. Katsaggelos. Machine Learning Refined. Cambridge University Press, 2020. URL Check chapters 2-4 plus Appendix for insightful explanations and visualizations of a variety of optimization concepts.
- T. M. Cover, J. A. Thomas. Elements of Information Theory. Wiley, 2006. URL Good intro to information theory in first hundred pages, though lacking cross-connections to ML / statistics.
- https://www.3blue1brown.com/topics/linear-algebra
- https://www.3blue1brown.com/topics/calculus
Optimization
- D. Bertsimas, J. Dunn. Machine Learning Under a Modern Optimization Lens. Dynamic Ideas LLC, 2019.
- S. Sra, S. Nowozin, S. J. Wright. Optimization for Machine Learning. MIT Press, 2011.
- D. P. Bertsekas, Nonlinear Programming, Athena Scientific, 2016
R Programming
- N. Matloff. The Art of R Programming. No Starch Press, 2011. URL