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1. Question: Convex Functions
(elementary)

1.1. Which of the following functions are convex? (Hint: draw a picture)

(i) f : R −→ R, x 7→ |x|
(ii) f : R −→ R, x 7→ cos(x)

(iii) f : R −→ R, x 7→ x2

1.2. Prove that the following functions are convex.

(i) affine linear functions, i.e. f : Rd −→ R, x 7→ aTx+ c for a ∈ Rd, c ∈ R,
(ii) norms, i.e. x 7→ ∥x∥,
(iii) sums of convex functions fk, i.e. f(x) =

∑n
k=1 fk(x),

(iv) F (x) := supf∈F f(x) for a set of convex functions F .

Solution:

1.1. |x| and x2 are both convex. cos(x) is not convex since we can draw a line at two points (from say π
2

to 2π + π
2 ) that is not above the function.

Proof that |x| is convex:
f(λx+ (1− λ)y) = |λx+ (1− λ)y|

≤ λ|x|+ (1− λ)|y|

Proof that x2 is convex: We begin by examining the inequality

(λx+ (1− λ)y)2 ≤ λx2 + (1− λ)y2

λ2x2 + 2λ(1− λ)xy + (1− λ)2y2 ≤ λx2 + (1− λ)y2

λ2x2 + 2λ(1− λ)xy + (1− λ)2y2 − λx2 − (1− λ)y2 ≤ 0(
λ2 − λ

)
x2 − 2

(
λ2 − λ

)
xy +

(
λ2 − λ

)
y2 ≤ 0(

λ2 − λ
) (

x2 − 2xy + y2
)
≤ 0(

λ2 − λ
)
(x− y)2 ≤ 0

Which holds when λ ∈ [0, 1], so the inequality is valid and our function is convex.

1.2. (i) We have

f(λx+ (1− λ)y) = aT (λx+ (1− λ)y) +

1︷ ︸︸ ︷
(λ+ 1− λ) c

linear
= λ

(
aTx+ c

)︸ ︷︷ ︸
f(x)

+(1− λ)
(
aT y + c

)︸ ︷︷ ︸
f(y)

.

(ii) We have

∥λx+ (1− λ)y∥
∆
≤ ∥λx∥+ ∥(1− λ)y∥ scaling

= λ∥x∥+ (1− λ)∥y∥.

(iii) We have

f(λx+ (1− λy)) =

n∑
k=1

fk(λx+ (1− λ)y)︸ ︷︷ ︸
≤λfk(x)+(1−λ)fk(y)

≤ λ

n∑
k=1

fk(x)︸ ︷︷ ︸
=f(x)

+(1− λ)

n∑
k=1

fk(y)︸ ︷︷ ︸
=f(y)

.
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(iv) We have

F (λx+ (1− λ)y) ≤ sup
f∈F

λf(x) + (1− λ)f(y) ≤ sup
f∈F

λf(x) + sup
g∈F

(1− λ)g(y)

= λF (x) + (1− λ)F (y)

2. Question: Lipschitz Continuous Functions
(elementary)

2.1. Which of the following functions are Lipschitz

(i) f : [1, 2] → R, x 7→ x3

(ii) f : R −→ R, x 7→ x2

2.2. Prove the following for Lipschitz functions f : R → R and g : R → R.

(i) The composition f ◦ g : R → R is Lipschitz.

(ii) The sum f + g : R → R defined by (f + g)(x) = f(x) + g(x) is Lipschitz.

2.3. Show that any Lipschitz function f : [a, b] → R defined on an interval of the form [a, b] is a bounded
function.

2.4. Show that h : [0, 1] → R given by h(x) =
√
x, is bounded, but not Lipschitz.

Solution:

2.1. (i) Since x3 − y3 = (x− y)
(
x2 + xy + y2

)
. It follows that

|f(x)− f(y)| ≤
∣∣x2 + xy + y2

∣∣ · |x− y| ⇒
|f(x)− f(y)| ≤

(
x2 + |xy|+ y2

)
· |x− y| ⇒

|f(x)− f(y)| ≤ (4 + 4 + 4) · |x− y|,

so f is Lipschitz with constant 12.

(ii) A function f : R −→ R is NOT Lipschitz if for any L > 0, we can find x, y ∈ R such that

|f(x)− f(y)| > L|x− y|.

In this specific case, take x = 2L and y = L. Then |f(x)− f(y)| = 3L2 > L2 = L|x− y|.
Therefore, x2 is not Lipschitz.

2.2. (i) Let Lf and Lg be the Lipschitz constants of f and g respectively. That is |f(x)−f(y)| ≤ Lf |x−y|
and |g(x)− g(y)| ≤ Lg|x− y| for any x, y ∈ R. Then,

|(f ◦ g)(x)− (f ◦ g)(x)| = |f(g(x))− f(g(y))|
≤ Lf |g(x)− g(y)|
≤ LfLg|x− y|,

so f ◦ g is Lipschitz with constant L = LfLg.

(ii) With Lf and Lg as above,

|(f + g)(x)− (f + g)(y)| = |f(x) + g(x)− f(y)− g(y)|
= |f(x)− f(y) + g(x)− g(y)|
≤ |f(x)− f(y)|+ |g(x)− g(y)|
≤ Lf |x− y|+ Lg|x− y|
= (Lf + Lg) |x− y|

so f + g is Lipschitz with constant L = Lf + Lg.
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2.3. For any x ∈ [a, b],
|f(x)− f(a)| ≤ L|x− a| ≤ L|b− a|,

and
|f(x)| = |f(x)− f(a) + f(a)|

≤ |f(x)− f(a)|+ |f(a)|
≤ L|b− a|+ |f(a)|.

so, taking M = L|b− a|+ |f(a)|, |f(x)| ≤ M and, thereby f is bounded.

2.4. If 0 ≤ x ≤ 1, then 0 ≤
√
x ≤ 1 and therefore |h(x)| ≤ 1. For a constant 0 < L < 1, take x = 0 and

y = 1 and observe that
|h(x)− h(y)| = 1 > L = L|x− y|.

For a constant L > 1, take x = 0 and y = 1
4L2 and observe that

|h(x)− h(y)| = 1

2L
>

1

4L
= L|x− y|.

3. Question: Optimization
(elementary)

Consider an optimization problem

min f(x) (⋆)

s.t. x ∈ Ω.

3.1. Prove that if Ω = Rn and f : Rn → R is convex and differentiable, any point x̄ that satisfies ∇f(x̄) = 0
is a global minimum.

3.2. Prove that if f : Rn → R is strictly convex on Ω and Ω is a convex set, the optimal solution (assuming
it exists) must be unique.

3.3. Consider the optimization problem of (⋆) under the additional constraint that Ax = b, A ∈ Rm×n.
Prove that if f is a convex function, a point x ∈ Rn is optimal to this constrained optimization problem
if and only if it is feasible and ∃µ ∈ Rm s.t.

∇f(x) = ATµ.

Hint: Start with what the first order condition for convexity tells us about the term ∇fT (x)(y− x) for
y : Ay = b and use the fact that y with Ay = b can be written as y = x+ v, for v ∈ Nul(A).

Solution:

3.1. From the first order characterization of convexity, we have

f(y) ≥ f(x) +∇fT (x)(y − x),∀x, y

In particular,
f(y) ≥ f(x̄) +∇fT (x̄)(y − x),∀y

Since ∇f(x̄) = 0, we get
f(y) ≥ f(x̄),∀y

Remarks:

• Recall that ∇f(x) = 0 is always a necessary condition for local optimality in an unconstrained
problem. The theorem states that for convex problems, ∇f(x) = 0 is not only necessary, but
also sufficient for local and global optimality.
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• In absence of convexity, ∇f(x) = 0 is not sufficient even for local optimality (e.g., think of
f(x) = x3 and x̄ = 0).

• Another necessary condition for (unconstrained) local optimality of a point x is that Hf(x) is
positive semi-definite. Note that a convex function automatically passes this test.

3.2. Suppose there were two optimal solutions x, y ∈ Rn. This means that x, y ∈ Ω and

f(x) = f(y) ≤ f(z),∀z ∈ Ω. (∗)

But consider z = x+y
2 . By convexity of Ω, we have z ∈ Ω. By strict convexity, we have

f(z) = f

(
x+ y

2

)
<

1

2
f(x) +

1

2
f(y)

=
1

2
f(x) +

1

2
f(x) = f(x).

But this contradicts (∗).

3.3. Since this is a convex problem, our optimality condition tells us that a feasible x is optimal iff

∇fT (x)(y − x) ≥ 0,∀y s.t. Ay = b

Any y with Ay = b can be written as y = x+v, where v is a point in the nullspace of A; i.e., Av = 0.
Given that x+ v − x = v, a feasible x is optimal if and only if ∇fT (x)v ≥ 0,∀v s.t. Av = 0.
Since Av = 0 implies that A(−v) = 0, we also have that ∇fT (x)v ≤ 0. Hence the optimality
condition reads

∇fT (x)v = 0 ∀v s.t. Av = 0.

This means that ∇f(x) is in the orthogonal complement of the nullspace of A which we know from
linear algebra equals the row space of A (or equivalently the column space of AT

)
. Hence ∃µ ∈ Rm

s.t. ∇f(x) = ATµ.

4. Question: Bregman Divergence
(advanced, to see what Lipschitz continuity can be used for)

The Bregman Divergence D
(B)
f of a continuously differentiable function f : Rd → R is defined as the error of

the linear approximation and is related to µ-strong convexity and Lipschitz continuous gradients as follows

µ

2
∥x− x0∥2

µ-strongly convex
(definition)

≤ f(x)−

linear approximation︷ ︸︸ ︷
f (x0)− ⟨∇f (x0) , x− x0⟩︸ ︷︷ ︸

=:D
(B)
f (x,x0)

L-Lipschitz gradient
(Descent Lemma)

≤ L

2
∥x− x0∥2

For µ = 0 this is simply the convexity condition. So non-negativity of the Bregman divergence implies
convexity. The L-Lipschitz gradients provide us with an upper bound on the Bregman divergence on the
other hand which immediately results in an upper bound on f

f(x) = f (x0) + ⟨∇f (x0) , x− x0⟩+D
(B)
f (x, x0)︸ ︷︷ ︸

≤L
2 ∥x−x0∥2

. (UB)
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Prove for functions f with L-Lipschitz gradients, we have for all x0

min
x

f(x) ≤ f (x0)−
1

2L
∥∇f (x0)∥2

by minimizing the upper bound (UB). What is the minimizer of the upper bound?
Hint: Try minimizing first w.r.t x : ∥x− x0∥ = r and then r. Additionally you will need the Cauchy-Schwartz
inequality, whereby, for vectors u and v: |⟨u,v⟩| ≤ ∥u∥∥v∥.

Solution:

Solution. We first solve the directional minimization problem

argmin
x:∥x−x0∥=r

f (x0) + ⟨∇f (x0) , x− x0⟩+
L

2
∥x− x0∥2 = x0 + argmin

d:∥d∥=r

⟨∇f (x0) , d⟩

= x0 + argmax
d:∥d∥=r

⟨−∇f (x0) , d⟩

= x0 −
r∇f (x0)

∥∇f (x0)∥
, (†)

where the last equation is true because by Cauchy-Schwartz

⟨−∇f (x0) , d⟩
C.S.
≤ ∥∇f (x0)∥ r

and〈
−∇f (x0) ,−

r∇f (x0)

∥∇f (x0)∥

〉
=

r

∥∇f (x0)∥

〈
∇f (x0) ,∇f (x0)

〉
=

r

∥∇f (x0)∥
∥∇f (x0)∥2 = ∥∇f (x0)∥ r.

So, in summary, we have

min
x

f(x) ≤ min
r

min
x:∥x−x0∥=r

f (x0) + ⟨∇f (x0) , x− x0⟩+
L

2
∥x− x0∥2︸ ︷︷ ︸

(†)
= f(x0)−r∥∇f(x0)∥+L

2 r2

.

Minimizing over the length r implies minimizing a convex parabola, so the first order condition is sufficient.

So setting f (x0)− r∥∇f (x0) ∥+ L
2 r

2 !
= 0 yields the minimizer

r∗ =
∥∇f (x0)∥

L
.

Reinserting r∗ into our upper bound yields the claim and we get the minimizer by inserting r∗ into (†):

x∗ = x0 −
1

L
∇f (x0) .

If you have any questions or feedback, please feel free to contact me via E-mail at
hannah.kuempel@stat.uni-muenchen.de!!

Also, thank you to Felix Benning & Prof. Dr. Simon Weißmann, Andy Hammerlindl, Kevin
Jamieson & Anna Karlin, and A.A. Ahmadi whose exercises this sheet was inspired by.
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