Hannah Schulz-Kiimpel Convexity and Lipschitz Continuity Problem Set
Math Tutorial, Department of Statistics, LMU December 10th, 2024

1. Question: Convex Functions

1.1. Which of the following functions are convex? (Hint: draw a picture)
(i) f:R—R, z+— |z
(ii)) f: R — R, =+ cos(x)
(iii) f:R — R, x — 22
1.2. Prove that the following functions are convex.
(i) affine linear functions, i.e. f:R? — R, z+ a’x +c for a € R, c € R,

)
(i)
)
)

(i
(iv) F(z) :=supscx f(x) for a set of convex functions F.

norms, i.e. x — ||z,

sums of convex functions fi, i.e. f(z) =Y 1_; fx(x),

Solution:

1.1. || and 22 are both convex. cos(x) is not convex since we can draw a line at two points (from say %
to 2m + 7 ) that is not above the function.

Proof that |z| is convex:
[z + (1= Ny) =[Az+ (1 - Nyl
< A+ (1 =Myl

Proof that x2 is convex: We begin by examining the inequality

Az + (1 - Ny)? < Az? 4+ (1 - N)y?
Nz? 201 = Ny + (1 - N2 < A? + (1 - \)y?
Nax? 200 - Nxy+ (1 - 222 -2 - (1 -2y <0
()\2—/\)x2—2(/\2—)\)xy—|—(/\2—)\)y2 <0
()\2 — )\) (x2 — 2zy —|—y2) <0
(A=A (z-y?<0

Which holds when X € [0, 1], so the inequality is valid and our function is convex.

1.2. (i) We have
1

T : \
fOz+1-Ny)=a Az+1Q-XNy)+(A+1-XNec

n= ol (a"z+c)+1 =N (a"y+c).
—— —

f(=) f(y)

(ii) We have
A scalin,
Az + (1= Nyl < [zl + (L= Nyl =" Alz]l + 1 =)yl

(iii) We have

fOz+ A=) =) frz+ (1 =Ny) A frl@) +1 =X fily) .
L aof@+0-nfw 0 L &
=f(z) =f(y)
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(iv) We have

F(Ar + (1= N)y) < sup Af(z) + (1 = A)f(y) < sup Af(z) + sup(l — A)g(y)
fer feF geF

= AF(z)+ (1 - \)F(y)

2. Question: Lipschitz Continuous Functions

2.1. Which of the following functions are Lipschitz

() f:[1,2] = R, 2+ 23
(i) f:R—R, > 22

2.2. Prove the following for Lipschitz functions f : R — R and g : R — R.

(i) The composition f og:R — R is Lipschitz.
(ii) The sum f + g : R — R defined by (f + g)(x) = f(z) + g(z) is Lipschitz.

2.3. Show that any Lipschitz function f : [a,b] — R defined on an interval of the form [a, b] is a bounded
function.

2.4. Show that h: [0,1] — R given by h(z) = \/z, is bounded, but not Lipschitz.

Solution:

2.1. (i) Since 2® — y* = (z — y) (2® + zy + y?). It follows that
[f(2) = f@)l < |2 +ay +9?] - |z —y =
[f(2) = F@)I < (2 + |yl +¢7) - Jo —yl =
[f(@) = f)l < (4+4+4) |z -yl

so f is Lipschitz with constant 12.
(ii) A function f : R — R is NOT Lipschitz if for any L > 0, we can find z,y € R such that

|f(x) = f(y)| > Llz — yl.

In this specific case, take z = 2L and y = L. Then |f(x) — f(y)| = 3L? > L? = L|z — y|.
Therefore, 22 is not Lipschitz.

2.2. (i) Let Ly and L, be the Lipschitz constants of f and g respectively. That is | f(z)—f(y)| < L¢|z—y|
and |g(z) — g(y)| < Lg|z — y| for any z,y € R. Then,

[(f e g)(x) = (fog)(x)] = [f(9(z)) — Flg(¥))]
< Lylg(x) — g9(v)l
< LpLgle —yl,
so f o g is Lipschitz with constant L = Ly L,.
(ii) With Ly and Ly as above,

I(f +9)(x) = (f +9) ()l

|f(z) +g(z) — f(y) — 9(v)
=|f(z) = f(y) + g9(x) — g(y)
|f(z) = f)] +19(z) — 9(v)
Lflz —y[ + Lg|z — y|

= (Ly + Lg) |z — ¢
so f + g is Lipschitz with constant L = L¢ + L.

\/\ IN
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2.3. For any z € [a, b],
[f(z) = f(a)| < Llz — a| < L|b—al,

and

[f (@) = |f(z) = f(a) + f(a)]
< |f(2) = f(a)l +[f(a)l
< L|b—a| +|f(a)].

so, taking M = L|b — a| + |f(a)|, | f(z)| < M and, thereby f is bounded.

2.4. If0 < 2 < 1, then 0 < y/z < 1 and therefore |h(z)| < 1. For a constant 0 < L < 1, take = 0 and
y = 1 and observe that
|h(z) = h(y)| =1 > L = Lz —yl.

For a constant L > 1, take z =0 and y = ﬁ and observe that

h(z) - h(®)| = = > = = Ljz —y.

2L~ 4L
3. Question: Optimization
Consider an optimization problem
min f(z) (x)
s.t. z € Q.

3.1. Prove that if Q = R™ and f : R® — R is convex and differentiable, any point Z that satisfies V. f(Z) = 0
is a global minimum.

3.2. Prove that if f: R™ — R is strictly convex on £ and € is a convex set, the optimal solution (assuming
it exists) must be unique.

3.3. Consider the optimization problem of () under the additional constraint that Az = b, A € R™*",
Prove that if f is a convex function, a point z € R™ is optimal to this constrained optimization problem
if and only if it is feasible and Ju € R™ s.t.

Vi(x)=ATp.
Hint: Start with what the first order condition for convexity tells us about the term V f¥ (x)(y — x) for
y: Ay =b and use the fact that y with Ay = b can be written as y = x + v, for v € Nul(4).

Solution:
3.1. From the first order characterization of convexity, we have
fy) 2 f(z) + V(@) (y —2),Yz,y
In particular,
fly) = f@) + V(@) (y - ),y
Since Vf(Z) = 0, we get
fy) = f(2), Yy
Remarks:

e Recall that Vf(z) = 0 is always a necessary condition for local optimality in an unconstrained
problem. The theorem states that for convex problems, V f(x) = 0 is not only necessary, but
also sufficient for local and global optimality.
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e In absence of convexity, Vf(z) = 0 is not sufficient even for local optimality (e.g., think of
f(x) =23 and z = 0).

e Another necessary condition for (unconstrained) local optimality of a point z is that H f(x) is
positive semi-definite. Note that a convex function automatically passes this test.

3.2. Suppose there were two optimal solutions z,y € R™. This means that z,y € Q and
f(z) = Fly) < f(2),Vz € Q. (%)

But consider z = % By convexity of 2, we have z € Q). By strict convexity, we have

1@ =1 (25Y)

< 5@+ 5()
1 1

= 55@)+ 31@) = f(@)

But this contradicts ().

3.3. Since this is a convex problem, our optimality condition tells us that a feasible x is optimal iff

VT (x)(y —x) >0,Yy s.t. Ay =10

Any y with Ay = b can be written as y = x + v, where v is a point in the nullspace of A; i.e., Av = 0.
Given that x + v — 2 = v, a feasible x is optimal if and only if Vf7 (z)v > 0,Vv s.t. Av = 0.
Since Av = 0 implies that A(—v) = 0, we also have that V{7 (z)v < 0. Hence the optimality
condition reads

ViT(z)v=0 VYust. Av=0.

This means that V f(z) is in the orthogonal complement of the nullspace of A which we know from
linear algebra equals the row space of A (or equivalently the column space of AT). Hence Ju € R™
st. Vf(z)=ATp.

4. Question: Bregman Divergence
(advanced, to see what Lipschitz continuity can be used for)

The Bregman Divergence D}B) of a continuously differentiable function f : R¢ — R is defined as the error of
the linear approximation and is related to p-strong convexity and Lipschitz continuous gradients as follows

pu-strongly convex

.. linear approximation L-Lipschitz gradient
M 9 (deﬁnltlon) (Descent Lemma) [, 9
5 lz = oll < f(@) = f (x0) = (V[ (w0) , & — o) < 3 llz = ol
::D;B)(z,mg)

For p = 0 this is simply the convexity condition. So non-negativity of the Bregman divergence implies
convexity. The L-Lipschitz gradients provide us with an upper bound on the Bregman divergence on the
other hand which immediately results in an upper bound on f

f(x) = f (z0) + (Vf (w0) & — o) + DY (z,20). (UB)
N————’

<% llz—ao®
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Prove for functions f with L-Lipschitz gradients, we have for all x(

1
rrgnf(a:) < f(xo) — 5Y7 IVf (IO)”2

by minimizing the upper bound (UB). What is the minimizer of the upper bound?
Hint: Try minimizing first w.r.t x : || — xo|| = r and then r. Additionally you will need the Cauchy-Schwartz
inequality, whereby, for vectors u and v: [(u,v)| < ||ul|||v].

Solution:

Solution. We first solve the directional minimization problem

argmin f (zo) + (V[ (20) ;& — wo) + é lz — wo||* = @0 + argmin (V f (o) , d)

z:||lz—zo||=7 d:||d||=r
= zo + argmax (—V f (2¢) , d)
d:[|dl|=r
_ zg— TV (Z0)
I "

where the last equation is true because by Cauchy-Schwartz

C.s.
(=Vf(20),d) < [IVf(xo)llr
and

B N _er(xo) _ 7 - - - )12 = TP
(=91 Gan), =LY — (V1 00, 95 (a0) ) = T VS ol = 197 (ool

So, in summary, we have

min f(z) <min_ min _f (z0) + (Y (20) 2~ 20) + 5 llo — o>

T zi||lz—zo||=r

D f(@o)—rl|V £ (wo) [+ L7

Minimizing over the length r implies minimizing a convex parabola, so the first order condition is sufficient.
So setting f (zo) — rl|V f (zo) || + &2 20 yields the minimizer

o = 194 Gl

Reinserting 7* into our upper bound yields the claim and we get the minimizer by inserting r* into (}):

1
¥ =z — sz(mo).

If you have any questions or feedback, please feel free to contact me via E-mail at
hannah.kuempel@stat.uni-muenchen.de!!

Also, thank you to Felix Benning & Prof. Dr. Simon Weiimann, Andy Hammerlindl, Kevin
Jamieson & Anna Karlin, and A.A. Ahmadi whose exercises this sheet was inspired by.
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