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1. Question: Classifying critical points
(elementary)

1.1. True or false? Motivate your answer. Let f : R3 → R be a twice differentiable function with a critical
point p0, whose Hessian matrix at p0 is

Hf (p0) =

 0 0 0
0 1 0
0 0 2

 .

Then:

(a) p0 cannot be a local maximum

(b) p0 cannot be a local minimum

(c) p0 cannot be a saddle point

(d) none of the above.

1.2. True or false? Motivate your answers. Let f : R2 → R be a continuously differentiable function and
consider its restriction over the square Q = [0, 1]× [0, 1] ⊂ R2. Then:

(a) If f has a local max /min / saddle at x0 in Q, then df (x0) = 0

(b) Let x0 ∈ Q be a point such that df (x0) = 0, then f has a local max/min/saddle at x0.

1.3. For each of the following functions, determine their critical points and find those for which the 2nd
derivative test applies, determining in such case whether they are local maxima, local minima or saddle
points.

(a) f : R2 → R, f(x, y) = x3 + y3 − 3xy,

(b) f : R3 → R, f(x, y, z) =
(
x3 − 3x− y2

)
z2 + z3,

(c) f : R2 → R, f(x, y) = xy2 − cos(x).

Solution:

1.1. (a) p0 cannot be a local maximum: TRUE

(b) p0 cannot be a local minimum: FALSE

(c) p0 cannot be a saddle point: FALSE

(d) none of the above: FALSE.

Indeed, denoting p0 = (x0, y0, z0), the restriction φ(y, z) = f (x0, y, z) has (y0, z0) as critical point
and Hφ (y0, z0) is positive definite, whence φ has a local minimum at (y0, z0). Therefore p0 cannot
be a local maximum for f . But otherwise it is a simple matter to cook up examples where p0 is either
a local minimum or a saddle point: f(x, y, z) = x4 + 1

2y
2 + z2 has in p0 = 0 its absolute minimum

(since f > 0 in R3\{0} ), while g(x, y, z) = x3 + 1
2y

2 + z2 has in p0 = 0 a saddle point (since, if it
where a local minimum, 0 would be a local minimum for the 1-variable function g(x, 0, 0) = x3, but
this latter is a saddle point instead).

1.2. (a) If f has a local max /min / saddle at x0 in Q, then df (x0) = 0: FALSE

(b) Let x0 ∈ Q be a point such that df (x0) = 0, then f has a local max/min/saddle at x0: TRUE.

Consider for instance f(x, y) = x : clearly f ≤ 1 and so f has a maximum at each point in (1, y);
however df(1, y) = (1, 0) ̸= 0, so (a) is false. However, if df (x0) = 0, this means that f has a
min /max / saddle at x0 in R2, and thus so it is for the restriction of f to Q.
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1.3. (a) The differential of f is

df(x, y) =

(
∂f

∂x
(x, y),

∂f

∂y
(x, y)

)
=
(
3x2 − 3y, 3y2 − 3x

)
so its critical points are the solution to the system{

x2 = y
y2 = x

This means that
y = x2 =

(
y2
)2

= y4 ⇔
(
y3 − 1

)
y = 0 ⇔ y ∈ {1, 0}

For y = 1 it follows x = 1, For y = 0 it follows x = 0. So the critical points are (1, 1) and (0, 0).
The Hessian matrix is

Hf(x, y) =

(
∂2f
∂x∂x

∂2f
∂y∂x

∂2f
∂x∂y

∂2f
∂y∂y

)
=

(
6x −3
−3 6y

)
.

At the critical points we have

Hf(1, 1) =

(
6 −3
−3 6

)
, Hf(0, 0) =

(
0 −3
−3 0

)
.

Since Hf(1, 1) has eigenvalues 3 and 9, it is positive definite and thus (1, 1) is a local minimum.
Since Hf(0, 0) has eigenvalues 3 and −3, it is indefinite and so (0, 0) is a saddle point.

(b) The differential of f is

df(x, y, z) =
(
3
(
x2 − 1

)
z2,−2yz2, 2z

(
x3 − 3x− y2

)
+ 3z2

)
so the critical points are the solutions to

3
(
x2 − 1

)
z2 = 0,

−2yz2 = 0,

2z
(
x3 − 3x− y2

)
+ 3z2 = 0.

Clearly, every point with z = 0 is a solution to the system. When z ̸= 0, we have the system
(
x2 − 1

)
= 0,

y = 0,

2
(
x3 − 3x− y2

)
+ 3z = 0.

whose solutions are then
(
1, 0, 4

3

)
and

(
−1, 0,− 4

3

)
. To sum up the critical points are

(x, y, 0) for every x, y ∈ R, (1, 0, 4/3), (−1, 0,−4/3).

We need to determine their type. The Hessian of f is

Hf(x, y, z) =

 6xz2 0 6z
(
x2 − 1

)
0 −2z2 −4yz

6z
(
x2 − 1

)
−4yz 2

(
x3 − 3x− y2

)
+ 6z

 ,

hence

Hf(1, 0, 4/3) =

 6(4/3)2 0 0
0 −2(4/3)2 0
0 0 4

 ,
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which is clearly indefinite, so (1, 0, 4/3) is a saddle point; then

Hf(−1, 0,−4/3) =

 −6(4/3)2 0 0
0 −2(4/3)2 0
0 0 −4

 ,

which is clearly negative definite, so (−1, 0,−4/3) is a local maximum; finally

Hf(x, y, 0) =

 0 0 0
0 0 0
0 0 2

(
x3 − 3x− y2

)
 ,

is has eigenvalues equal to 0, so the second derivative test does not apply in this case.

(c) The differential of f is

df(x, y) =

(
∂f

∂x
(x, y),

∂f

∂y
(x, y)

)
=
(
y2 + sin(x), 2xy

)
.

so the critical points are the solutions to the system{
y2 + sin(x) = 0,

2xy = 0.

From the 2 nd equation it follows that x = 0 or y = 0. If x = 0, the 1 st equation yields
y = 0. If y = 0 the 1 st equation yields x = kπ with k ∈ Z. The set of critical points is then
{(kπ, 0) | k ∈ Z}. The Hessian is

Hf(x, y) =

(
∂2f
∂x∂x

∂2f
∂y∂x

∂2f
∂x∂y

∂2f
∂y∂y

)
=

(
cos(x) 2y
2y 2x

)
.

At (kπ, 0) ∈ R2 with k ∈ Z we get

Hf(kπ, 0) =

(
cos(kπ) 0

0 2kπ

)
=

(
(−1)k 0

0 2kπ

)
,

which is diagonal, and hence we deduce that

k > 0 even ⇒ both EV positive ⇒ local minima
k > 0 odd ⇒ EV with different sign ⇒ saddle point
k = 0 ⇒ one EV vanishes ⇒ cannot conclude
k < 0 even ⇒ EV with different sign ⇒ saddle point
k < 0 odd ⇒ both EV negative ⇒ local maxima.

2. Question: Second derivative test for f : R2 −→ R
(elementary)

2.1. Prove the following statement. (A bit more advanced, you may also just use this statement
for the following question for now.)

Let A =

(
a b
b c

)
be a symmetric 2× 2 matrix, where a, b, c ∈ R. Then A is positive definite if a > 0

and ac− b2 > 0.A is negative definite if a < 0 and ac− b2 > 0.
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2.2. Show that if f : A ⊆ R2 → R has a critical point x0 ∈ A and we let

∆ =
∂2f

∂x1∂x1
· ∂2f

∂x2∂x2
−
(

∂2f

∂x1∂x2

)2

be evaluated at x0, then

(a) ∆ > 0 and ∂2f/∂x1∂x1 > 0 imply f has a local minimum at x0.

(b) ∆ > 0 and ∂2f/∂x1∂x1 < 0 imply f has a local maximum at x0.

(c) ∆ < 0 implies x0 is a saddle point of f .

Solution:

2.1. Let v = (x, y)⊤ be an arbitrary non-zero vector. Then

v⊤Av =
(
x y

)( a b
b c

)(
x

y

)
= ax2 + 2bxy + cy2

= ax2 + 2bxy +
b2y2

a
− b2y2

a
+ cy2

= a

(
x+

by

a

)2

+

(
c− b2

a

)
y2

If A is to be positive definite, then v⊤Av > 0 for all v. In particular, for y = 0, we must have
ax2 > 0, which implies a > 0. Also, when x = −(b/a)y,

(
c− b2/a

)
y2 > 0 implies ac − b2 > 0. If A

is to be negative definite, then v⊤Av < 0 for all v. In particular, for y = 0, we must have ax2 < 0,
which implies a < 0. Also, when x = −(b/a)y,

(
c− b2/a

)
y2 < 0 implies a

(
c− b2/a

)
> 0, which

yields ac− b2 > 0.

2.2. First, we note that ∆ = det(Hf).

(a) We know that f has a local minimum at x0 if x0 is a critical point of f such that Hf(x0)
is positive definite. Thus we need only show that Hf(x0) is positive definite if ∆ > 0 and
∂2f/∂x1∂x1 > 0.
Since the Hessian matrix Hf clearly satisfies the conditions of the statement from 2.1, it follows
that Hf(x0) is positive definite if ∆ = ac− b2 > 0 and ∂2f/∂x1∂x1 = a > 0.

(b) Since the Hessian matrix clearly satisfies the conditions of the lemma, it follows that Hf(x0)
is negative definite if ∆ = ac− b2 > 0 and ∂2f/∂x1∂x1 = a < 0.

(c) If x0 is not a local max or min, then it must be a saddle point. Similarly, if it is not the case
that ∆ > 0 and ∂2f/∂x1∂x1 > 0 or ∆ > 0 and ∂2f/∂x1∂x1 < 0, then it must be true that
∆ < 0. Therefore, ∆ < 0 implies x0 is a saddle point of f .

3. Question: Taylor Polynomial and Taylor-Series
(elementary)

3.1. Show that the Taylor Series generated by the function f(x) := ex at x0 = 0 converges to f(x) for every
value of x.

3.2. Use your result form 3.1 to prove that e =

∞∑
n=0

1

n!
.

In fact, it turns out that ex is analytic in the sense that the Taylor series
∑∞

k=0
ex0

k! (x− x0)
k
converges

to ex for all x0 ∈ R. However, even a converging Taylor series does not necessarily converge to its
corresponding function f(x).
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3.3. Find the Taylor series approximation of

f(x) =

{
e−

1
x2 x ̸= 0

0 x = 0

at x0 = 0. How accurate is the k th degree Taylor approximation?

Hint : You may use the fact that lim
x→∞

e
− 1

x2

xn = 0 ∀n ∈ N.

Solution:

3.1. Since ∂
∂xe

x = ex, f(x) is infinitely differential on (−∞,∞). Using the Taylor Polynomial generated
by f(x) = ex at x0 = 0 and Taylor’s theorem, we have

ex =

∞∑
k=0

e0

k!
(x− 0)

k
+Rx0

n (x)(x)
e0=1
= 1 + x+

x2

2!
+ · · ·+ xn

n!
+Rx0

n (x)(x)

where Rx0
n (x)(x) = ec

(n+1)!x
n+1 for some c between 0 and x. Recall that ex is an increasing function,

so;
x > 0 : 0 < c < x =⇒ e0 < ec < ex =⇒ 1 < ec < ex

x < 0 : x < c < 0 =⇒ ex < ec < e0 =⇒ ex < ec < 1
x = 0 : ex = 1, xn+1 = 0 =⇒ Rx0

n (x)(x) = 0.

And, therefore,

x > 0 : |Rx0
n (x)(x)| =

∣∣∣ ecxn+1

(n+1)!

∣∣∣ ≤ exxn+1

(n+1)!

n→∞−−−−→ 0

x ≤ 0 : |Rx0
n (x)(x)| =

∣∣∣ ecxn+1

(n+1)!

∣∣∣ ≤ |x|n+1

(n+1)!

n→∞−−−−→ 0.

It follows that limn→∞ Rx0
n (x)(x) = 0 for all x, so the series converges to ex on (−∞,∞). Thus,

∀x ∈ (−∞,∞)

ex = 1 + x+
x2

2!
+ · · ·+ xn

n!
+ · · · =

∞∑
n=0

xn

n!
.

3.2. This immediately follows from the fact that
∑∞

n=0

xn

n!
for all x ∈ (−∞,∞), including x = 1.

3.3. It turns out that f(x) is infinitely differentiable at x = 0. For x ̸= 0, we can use the chain rule to
compute its derivative explicitly,

f ′(x) =
2

x3
· e−

1
x2 , f ′′(x) =

4− 6x2

x6
· e−

1
x2 , f ′′′(x) =

24x4 − 36x2 + 8

x9
· e−

1
x2 , . . .

In general, the nth derivative will be a rational functions up to order x−3n times e−
1
x2 . If we take

the limit as x → 0, each of the terms above is 0, as lim
x→∞

e
− 1

x2

x3n = 0 ∀n ∈ N by the given hint, so

f (n)(0) = 0 for all n ≥ 0.

This means that the Taylor series for f(x) is the constant function 0 . For any k > 0, the k th degree
Taylor polynomial P x0

k (x) = 0, which implies that

Rx0

k (x) = f(x)− P x0

k (x) = f(x) ̸= 0

unless x = 0. Therefore, the Taylor polynomial approximation is completely useless for computing
f(x).
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∞∑
k=0

f (k) (x0)

k!
(x− x0)

k

f(x) = P x0
n (x) +

f (n+1)(c)

(n+ 1)!
(x− x0)

n+1
.

The term Rx0
n (x)x0(x) := f(n+1)(c)

(n+1)! (x− x0)
n+1

If you have any questions or feedback, please feel free to contact me via E-mail at
hannah.kuempel@stat.uni-muenchen.de!!

Also, thank you to the authors of the book Mathematics for Machine Learning as well as
Prof. Özlem Imamoglu, and Anthony Varilly whose exercises this sheet was inspired by.
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