Hannah Schulz-Kiimpel Vector Calculus Problem Set
Math Tutorial, Department of Statistics, LMU November 26th, 2024

1. Question: Derivatives of functions taking scalars as inputs

1.1. Calculate the gradient of the following two functions

(i) F: R — R2
(i) G: R — R3

0
G(z) = ( a3 + 222 ) .
cos(z)

1.2. Calculate the gradient of the following two functions

Fla) - ( I )

(i) F:R —s R2X3

(i) G : R — R3*2

5x sin(x)
G(x) = 2 23 + 222
2% + 3z 1

1.3. Consider two functions f : R — R™ and g : R — R"™. Verify the general sum rule and product
rule for these two functions.

Solution:
1.1. (i) The gradient of F is

(ii) The gradient of G is

1.2. (i) The gradient of F is

(ii) The gradient of G is

5 cos(x)
ag(x) = o 32+4
v 2z + 3 0
1.3. We start by writing
fi(z) 91()
f@= | amd gw=| :
fo(2) gn ()
The general sum rule is easily proven:
0 0
9 fi(@) + g1(z) _— 1 %ﬁ(x)—kafmgl(x)
7(f("1:) + g(m)) - . nlvarlagsu u E
ox or
fn(@) + gn(x) 9 0

%fn(x) + %gn(x)
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2. Question: Derivatives of functions taking vectors as inputs

2.1. Calculate the Jacobian matrix of the following two functions

(i) F:R? — R? where:

22 4 sin(x) |
Yy~ —3zy

(ii) G :R?® — R? where: )
-y’

Glz,y,2) = Sxyz— 5 |

2.2. Determine the gradlent of the following function, where M, N € Ny
f(ac) = Az, f(x)e€ RM, A eRM*XN g ecRV.

2.3. Consider the function h: R — R, h(t) = (f o g)(t) with

f:R*=R

g:R — R?

f(x) =exp (fﬂlxg) )
| w | | tcost
= [ T } =g(t) = [ tsint }
and compute the gradient of hA with respect to t.

2.4. Use the chain rule, both according to Proposition 7.1 and according to Remark 7.1, to find
the gradient of
F:R}—R, (z,9,2)— fop(z,y,2)
for
¢ R — R (2,9,2) = (W(2), g(2,9), 2)
and scalar-valued functions f, g, and h defined as f(z,y,2) := 2% + yz, g(z,y) = y> + 2y, and
h(zx) :=sinzx.



Hannah Schulz-Kiimpel Vector Calculus Problem Set
Math Tutorial, Department of Statistics, LMU November 26th, 2024

Solution:
2.1. (i) The Jacobian matrix is:

2z + cos(z) 0
Jr(z,y) = y—2 x
-3y 2y — 3z

(ii) The Jacobian is:
2 -2y O
3yz 3xz 3zy

Jao2) = |

2.2. To compute the gradient df /dx we first determine the dimension of df/dz : Since f : RN — RM it
follows that df/dz € RM*Y. Second, to compute the gradient we determine the partial derivatives
of f with respect to every z; :

- of;
.’1}) = ZAMSC]' — % = Aij
1 9

We collect the partial derivatives in the Jacobian and obtain the gradient

af af
d_f 83:1 axi, All AlN
di = = . . = A & RMXN.
of of
T ees i A AmN

2.3. Since f: R? - R and g : R — R? we note that

of 1><2 dg 2x1
ox S ot S

The desired gradient is computed by applying the chain rule:

dh 8f3m7{ of  of ] { chtl }
At Oz Ot bz1 9= .
cost —tsint }

= [ exp (z123) 23 2exp (z123) 2122 | [ sint + t cost

= exp (z123) (23(cost — tsint) + 2zyzo(sint + t cost))
where 1 = tcost and xo = tsint.
2.4. Here fop(z,y,2) = f(h(x),9(z,y),2) = h(z)*> + g(z,y)z. The chain rule gives

OF O0foh 0fdg  Of 0z
9z Ohdx  dgdx ' 0z 0z
OF _0f0h  0f0g  0f 0z _ 2
B 3h3y+5gay+8zay_0+z(3y +z)+0
OF O0f0oh 0fdg Of 0z

Dz ohoz | 9g0: 020z

=2sinzcosz + zy + 0

=040+ (y°+zy)

Therefore Jp(z,y, z ( 2sinzcosx + 2y wxz+3y*z Yy +axy ) Alternatively, we can use Ja-
cobean matrices: JF( ) = Jfop(x) = Jp(@(x)) o J,(x). In this case

COS & 0 0
Jr(z,y,2) = ( 2h(z) 2z g(z,y) )- y  3yi+az 0
0 0 1

and we get the same answer as before.
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3. Question: Derivatives of functions taking matrices as inputs

Note that the Booklet only contains instructions on taking the derivative of scalar-valued functions taking
matrices as inputs (matriz norms being a common case). If you are interested in the derivation of vector
and matrix valued functions taking matrices as indices, see Examples 5.12 and 5.13 of |Deisenroth, M. P.,

Faisal, A. A., & Ong, C. S. (2020). Mathematics for Machine Learning

3.1. For a matrix A € R™*" the Frobenius norm is defined as | X ||r := \/27:1 > |ai;|>.

Calculate the gradient of the squared Frobenius norm, i.e. the function
fiR™ SR X e[| X3

3.2. Prove the following identities

(i) Varf(A) = (Vaf(A)T, for a differentiable function f : R™*" — R, m,n € Nag.
(ii) Vatr(AB) = BT.

Solution:

3.1. Since matrix norms are scalar valued functions, we must simply compute the matrix of partial deriva-
tives from definition 7.4.

2
Since f(X) = <\/ZZZ1 Z;;l |aij|2> = >, 2?21 lai;|?, it immediately follows that
6£(X> =2x;; Vie{l,...,m}, j € {1,...,n}. Therefore, thre gradient of the squared Frobenius
L4
normj is
ofx) . of(X)
2 e 221m
IC W I O e
0X : ° : = : i : = LAt
axﬂ%l ammn
3.2. (i)
[ 0f(4) 97 (4) 9f(A) T
Oay Oaq T Oapg
of(4) 9f(4)  9f(4)
Varf(A)=| Oaz  Oaxn danz | = (Vaf(A)".
of(4) oA of(A)
L 8a1n aazn aann E
(i)
Sl NI,
%
— ap — m m o
tr(AB) = tr : b b b | = > aribi + Y azibia+ -+ Y anibin
N 4 1 i=1 =i i=1
— ay, —
N 0tr(AB) b
8aij

= Vatr(AB) = BT.
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4. Question: Directional derivative (a bit more advanced)

Evaluating partial derivatives only gives us the slope of a function in the direction of one of the inputs, or,
equivalently, the direction of the corresponding canonical vector. (A canonical vector is a vector each of
whose components are all zero, except one that equals 1.)

If we are interested in the slope of a function in the direction of a non-canonical vector, i.e. when changing
several inputs at once, we can use the directional derivative. The directional derivative of function f at
X along u is defined as

For differentiable functions f and unit vector u, i.e. |u|| =1, the directional derivative is simply computed
as Dy f(x) = Vf(x)u.

4.1. Evaluate the directional derivative Dy f(x) for the following
-
(i) f(z,y) = e®cos(my), x = (0,—1)T and u = (7%, %) .
AT

(il) flz,y) =2y* + 2%y, x=(4,-2)" andu = (%ﬁ \/%O)

4.2. A function f:R™ — R is called homogeneous of degree m if f(tx) = t™f(x) for all x € R™ and t € R.
If f is differentiable, show that for x € R™,

Vf(xz)r =mf(x), that is, sz gg =
i=1 ’

mf(x).

Show that maps multilinear in k variables, which are characterized by the following property

L(:Eh-"7xi71>au+ﬁw7xi+17"'>:En)

=al (1, . Tie1, Uy T 1y oy T) + B (X1, 0o T, Wy T 1y - ooy T)
give rise to homogeneous functions of degree k. Give other examples.

Solution:
4.1.
(i) We have
(1)) = (G2 5 ) = e costm), ~me*sin(r)

and thus if we evaluate at (0, —1) we find
(Vf)(0,-1) = (=1,0)

Since u is a unit vector and f differentiable, the directional derivative in general is (Vf) (z1, 22) - u,
so for this problem the answer is

1 2 1
19 (%)= 7
(ii) We have
(V1)(@y) = (4 + 32y, 20y + 2°)

and thus if we evaluate at (4, —2) we find

(Vf)(4,-2) = (-92,48)
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Again, since u is a unit vector and f differentiable, the directional derivative in general is
(Vf)(z1,22) - u, so for this problem the answer is

1 3 52
—92,48) - : -2
( ) (\/ 10 v/ 10) v10
4.2. By definition of the directional derivative,

)= o LIy SO0

Using the fact that f is homogeneous of degree m, we get

Vi(w)e = lim LW @ = 5@ _ ((1 Lk i 1) f(@)

h—0 h h—0 h
m m m\ 1,2 mypm __
. <1 + (M h+ ()R + -+ (M)h 1>f(x)
h—0 h

= lim (m+ <ﬂ;)h+~~+ <Z>hm1) f(z) =mf(z)

as desired. k-linear maps are characterized by the property

L($17-~'axi—laau+6w7xi+17"',$n)
:aL(xh...7$i71,u,xi+1,...,$n)+ﬁ($17...71’i71,w,$i+1,...,(En)
If we define g(z) = L(=, ..., ), then it follows that
——

k times

g(tz) = L(tz, ... tx) =t*L(z, ..., z) = t*g(x)

Therefore, maps multilinear in & variables give rise to homogeneous functions of degree k. An example
of a non-linear homogeneous function is f(x,y) = 2% 4+ y. This is homogeneous of degree 2 since

f(kx, ky) = k? (x2 + y2) = k2 f(x,y).

If you have any questions or feedback, please feel free to contact me via E-mail at
hannah.kuempel@stat.uni-muenchen.de!!

Also, thank you to the authors of the books Mathematics for Machine Learning as well as
Steven J. Miller and Anthony Varilly] whose exercises this sheet was inspired by.
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