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1. Question: Derivatives of functions taking scalars as inputs
(elementary)

1.1. Calculate the gradient of the following two functions

(i) F : R −→ R2

F (x) =

(
x3

2ex

)
.

(ii) G : R −→ R3

G(x) =

 0
x3 + 2x2

cos(x)

 .

1.2. Calculate the gradient of the following two functions

(i) F : R −→ R2×3

F (x) =

(
x2 2ex 0
0 x ln(x)

)
.

(ii) G : R −→ R3×2

G(x) =

 5x sin(x)
2 x3 + 2x2

x2 + 3x 1

 .

1.3. Consider two functions f : R −→ Rn and g : R −→ Rn. Verify the general sum rule and product
rule for these two functions.

Solution:

1.1. (i) The gradient of F is
∂F (x)

∂x
=

(
2x
2ex

)
.

(ii) The gradient of G is

∂G(x)

∂x
=

 0
3x2 + 4x
− sin(x)

 .

1.2. (i) The gradient of F is
∂F (x)

∂x
=

(
2x 2ex 0
0 1 1/x

)
.

(ii) The gradient of G is

∂G(x)

∂x
=

 5 cos(x)
0 3x2 + 4x

2x+ 3 0

 .

1.3. We start by writing

f(x) =

f1(x)
...

fn(x)

 and g(x) =

g1(x)
...

gn(x)

 .

The general sum rule is easily proven:

∂

∂x
(f(x) + g(x)) =

∂

∂x

f1(x) + g1(x)
...

fn(x) + gn(x)

 Univariate sum rule
=


∂

∂x
f1(x) +

∂

∂x
g1(x)

...
∂

∂x
fn(x) +

∂

∂x
gn(x)


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=


∂

∂x
f1(x)

...
∂

∂x
fn(x)

+


∂

∂x
g1(x)

...
∂

∂x
gn(x)

 =
∂f

∂x
+

∂g

∂x
.

And the product rule does not take much more:

∂

∂x
(f(x)g(x)) =

d

∂x

(
n∑

i=1

fi(x)gi(x)

)
=

n∑
i=1

∂

∂x
(fi(x)gi(x))

=

n∑
i=1

(
∂

∂x
(fi(x)) gi(x) + fi(x)

∂

∂x
(gi(x))

)

=

n∑
i=1

∂

∂x
(fi(x)) gi(x) +

n∑
i=1

fi(x)
∂

∂x
(gi(x))

=
∂f

∂x
g(x) + f(x)

∂g

∂x
.

2. Question: Derivatives of functions taking vectors as inputs
(elementary)

2.1. Calculate the Jacobian matrix of the following two functions

(i) F : R2 → R3 where:

F (x, y) =

 x2 + sin(x)
x(y − 2)
y2 − 3xy


(ii) G : R3 → R2 where:

G(x, y, z) =

[
x2 − y2

3xyz − 5

]
2.2. Determine the gradient df

dx of the following function, where M,N ∈ N>0

f(x) = Ax, f(x) ∈ RM , A ∈ RM×N , x ∈ RN .

2.3. Consider the function h : R→ R, h(t) = (f ◦ g)(t) with

f : R2 → R
g : R→ R2

f(x) = exp
(
x1x

2
2

)
,

x =

[
x1

x2

]
= g(t) =

[
t cos t
t sin t

]
and compute the gradient of h with respect to t.

2.4. Use the chain rule, both according to Proposition 7.1 and according to Remark 7.1, to find
the gradient of

F : R3 −→ R, (x, y, z) 7→ f ◦ φ (x, y, z)

for
φ : R3 −→ R3, (x, y, z) 7→ (h(x), g(x, y), z)

and scalar-valued functions f , g, and h defined as f(x, y, z) := x2 + yz, g(x, y) := y3 + xy, and
h(x) := sinx.
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Solution:

2.1. (i) The Jacobian matrix is:

JF (x, y) =

 2x+ cos(x) 0
y − 2 x
−3y 2y − 3x


(ii) The Jacobian is:

JG(x, y, z) =

[
2x −2y 0
3yz 3xz 3xy

]
2.2. To compute the gradient df/dx we first determine the dimension of df/dx : Since f : RN → RM , it

follows that df/dx ∈ RM×N . Second, to compute the gradient we determine the partial derivatives
of f with respect to every xj :

fi(x) =

N∑
j=1

Aijxj =⇒
∂fi
∂xj

= Aij

We collect the partial derivatives in the Jacobian and obtain the gradient

df

dx
=


∂f1
∂x1

· · · ∂f1
∂xN

...
...

∂fM
∂x1

· · · ∂fM
∂xN

 =

 A11 · · · A1N

...
...

AM1 · · · AMN

 = A ∈ RM×N .

2.3. Since f : R2 → R and g : R→ R2 we note that

∂f

∂x
∈ R1×2,

∂g

∂t
∈ R2×1

The desired gradient is computed by applying the chain rule:

dh

dt
=

∂f

∂x

∂x

∂t
=
[

∂f
∂x1

∂f
∂x2

] [ ∂x1

∂t
∂x2

∂t

]
=
[
exp

(
x1x

2
2

)
x2
2 2 exp

(
x1x

2
2

)
x1x2

] [ cos t− t sin t
sin t+ t cos t

]
= exp

(
x1x

2
2

) (
x2
2(cos t− t sin t) + 2x1x2(sin t+ t cos t)

)
,

where x1 = t cos t and x2 = t sin t.

2.4. Here f ◦ φ(x, y, z) = f(h(x), g(x, y), z) = h(x)2 + g(x, y)z. The chain rule gives

∂F

∂x
=

∂f

∂h

∂h

∂x
+

∂f

∂g

∂g

∂x
+

∂f

∂z

∂z

∂x
= 2 sinx cosx+ zy + 0

∂F

∂y
=

∂f

∂h

∂h

∂y
+

∂f

∂g

∂g

∂y
+

∂f

∂z

∂z

∂y
= 0 + z

(
3y2 + x

)
+ 0

∂F

∂z
=

∂f

∂h

∂h

∂z
+

∂f

∂g

∂g

∂z
+

∂f

∂z

∂z

∂z
= 0 + 0 +

(
y3 + xy

)
Therefore JF (x, y, z) =

(
2 sinx cosx+ zy xz + 3y2z y3 + xy

)
. Alternatively, we can use Ja-

cobean matrices: JF (x) = Jf◦φ(x) = Jf (φ(x)) ◦ Jφ(x). In this case

JF (x, y, z) =
(
2h(x) z g(x, y)

)
·

 cosx 0 0
y 3y2 + x 0
0 0 1


and we get the same answer as before.
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Math Tutorial, Department of Statistics, LMU

Vector Calculus Problem Set
November 26th, 2024

3. Question: Derivatives of functions taking matrices as inputs
(elementary)

Note that the Booklet only contains instructions on taking the derivative of scalar-valued functions taking
matrices as inputs (matrix norms being a common case). If you are interested in the derivation of vector
and matrix valued functions taking matrices as indices, see Examples 5.12 and 5.13 of Deisenroth, M. P.,
Faisal, A. A., & Ong, C. S. (2020). Mathematics for Machine Learning

3.1. For a matrix A ∈ Rm×n, the Frobenius norm is defined as ∥X∥F :=
√∑m

i=1

∑n
j=1 |aij |

2
.

Calculate the gradient of the squared Frobenius norm, i.e. the function

f : Rm×n −→ R, X 7→ ∥X∥2F .

3.2. Prove the following identities

(i) ∇AT f(A) = (∇Af(A))
T
, for a differentiable function f : Rm×n −→ R, m,n ∈ N>0.

(ii) ∇A tr(AB) = BT .

Solution:

3.1. Since matrix norms are scalar valued functions, we must simply compute the matrix of partial deriva-
tives from definition 7.4.

Since f(X) =
(√∑m

i=1

∑n
j=1 |aij |

2
)2

=
∑m

i=1

∑n
j=1 |aij |

2
, it immediately follows that

∂f(X)

∂xij
= 2xij ∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}. Therefore, thre gradient of the squared Frobenius

norm is

∂f(X)

∂X
=


∂f(X)

∂x11
· · · ∂f(X)

∂x1n
...

. . .
...

∂f(X)

∂xm1
· · · ∂f(X)

∂xmn

 =

 2x11 · · · 2x1n

...
. . .

...
2xm1 · · · 2xmn

 = 2X.

3.2. (i)

∇AT f(A) =



∂f(A)

∂a1

∂f(A)

∂a1
. . .

∂f(A)

∂an1
∂f(A)

∂a12

∂f(A)

∂a22
. . .

∂f(A)

∂an2
...

...
. . .

...
∂f(A)

∂a1n

∂f(A)

∂a2n
· · · ∂f(A)

∂ann


= (∇Af(A))

T
.

(ii)

tr(AB) = tr


←− −→a1 −→
←− −→a2 −→

...
←− −→an −→


 ↑ ↑ ↑
−→
b1
−→
b2 · · ·

−→
bn

↓ ↓ ↓

 =

m∑
i=1

a1ibi1 +

m∑
i=1

a2ibi2 + . . .+

m∑
i=1

anibin

⇒ ∂ tr(AB)

∂aij
= bji

⇒ ∇A tr(AB) = BT .
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4. Question: Directional derivative (a bit more advanced)

Evaluating partial derivatives only gives us the slope of a function in the direction of one of the inputs, or,
equivalently, the direction of the corresponding canonical vector. (A canonical vector is a vector each of
whose components are all zero, except one that equals 1.)
If we are interested in the slope of a function in the direction of a non-canonical vector, i.e. when changing
several inputs at once, we can use the directional derivative. The directional derivative of function f at
x along u is defined as

Duf(x) = lim
h→0

f(x+ hu)− f(x)

h
.

For differentiable functions f and unit vector u, i.e. ∥u∥ = 1, the directional derivative is simply computed
as Duf(x) = ∇f(x)u.

4.1. Evaluate the directional derivative Duf(x) for the following

(i) f(x, y) = ex cos(πy), x = (0,−1)⊤ and u =
(
− 1√

5
, 2√

5

)⊤
.

(ii) f(x, y) = xy2 + x3y, x = (4,−2)⊤ and u =
(

1√
10
, 3√

10

)⊤
4.2. A function f : Rn → R is called homogeneous of degree m if f(tx) = tmf(x) for all x ∈ Rn and t ∈ R.

If f is differentiable, show that for x ∈ Rn,

∇f(x)x = mf(x), that is,

n∑
i=1

xi
∂f

∂xi
= mf(x).

Show that maps multilinear in k variables, which are characterized by the following property

L (x1, . . . , xi−1, αu+ βw, xi+1, . . . , xn)

=αL (x1, . . . , xi−1, u, xi+1, . . . , xn) + β (x1, . . . , xi−1, w, xi+1, . . . , xn)

give rise to homogeneous functions of degree k. Give other examples.

Solution:

4.1.

(i) We have

(∇f)(x, y) =
(
∂f

∂x
,
∂f

∂y

)
= (ex cos(πy),−πex sin(πy))

and thus if we evaluate at (0,−1) we find

(∇f)(0,−1) = (−1, 0)

Since u is a unit vector and f differentiable, the directional derivative in general is (∇f) (x1, x2) · u,
so for this problem the answer is

(−1, 0) ·
(
− 1√

5
,
2√
5

)
=

1√
5
.

(ii) We have
(∇f)(x, y) =

(
y2 + 3x2y, 2xy + x3

)
and thus if we evaluate at (4,−2) we find

(∇f)(4,−2) = (−92, 48)
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Again, since u is a unit vector and f differentiable, the directional derivative in general is
(∇f) (x1, x2) · u, so for this problem the answer is

(−92, 48) ·
(

1√
10

,
3√
10

)
=

52√
10

.

4.2. By definition of the directional derivative,

∇f(x)x = lim
h→0

f(x+ hx)− f(x)

h
= lim

h→0

f((1 + h)x)− f(x)

h

Using the fact that f is homogeneous of degree m, we get

∇f(x)x = lim
h→0

(1 + h)mf(x)− f(x)

h
= lim

h→0

(
(1 + h)m − 1

h

)
f(x)

= lim
h→0

(
1m +

(
m
1

)
h+

(
m
2

)
h2 + · · ·+

(
m
m

)
hm − 1

h

)
f(x)

= lim
h→0

(
m+

(
m

2

)
h+ · · ·+

(
m

m

)
hm−1

)
f(x) = mf(x)

as desired. k-linear maps are characterized by the property

L (x1, . . . , xi−1, αu+ βw, xi+1, . . . , xn)

=αL (x1, . . . , xi−1, u, xi+1, . . . , xn) + β (x1, . . . , xi−1, w, xi+1, . . . , xn)

If we define g(x) = L(x, . . . , x︸ ︷︷ ︸
k times

), then it follows that

g(tx) = L(tx, . . . , tx) = tkL(x, . . . , x) = tkg(x)

Therefore, maps multilinear in k variables give rise to homogeneous functions of degree k. An example
of a non-linear homogeneous function is f(x, y) = x2 + y2. This is homogeneous of degree 2 since
f(kx, ky) = k2

(
x2 + y2

)
= k2f(x, y).

If you have any questions or feedback, please feel free to contact me via E-mail at
hannah.kuempel@stat.uni-muenchen.de!!

Also, thank you to the authors of the books Mathematics for Machine Learning as well as
Steven J. Miller and Anthony Varilly whose exercises this sheet was inspired by.
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