1. Question: Convergence of Sequences (*elementary*)

1.1. Show that $\lim_{n\to\infty} \frac{n^2}{n^2+n+1} = 1$ using proposition 6.1.

- **1.2.** Prove the following statement: If $\{x_n\}$ is convergent, then $\{x_n\}$ is bounded. Hint: Here, it might help you to set $\varepsilon = 1$ and separately consider the cases $n \leq M$ and n > M for some $M \in \mathbb{N}_{>0}$.
- **1.3.** In each of the following cases, decide whether the sequence is convergent or divergent. If convergent, find its limit. You may use the following fact:

If $c \in (0,1)$, then $c^n_{n \to \infty} = 0$. If c > 1, then $\{c_n\}$ is unbounded and diverges.

(i) $a_n = 5 - 0.1^n$ (ii) $a_n = 1^n + (-1)^n$ (iii) $a_n = \frac{\sin n}{n}$ (iv) $a_n = \frac{2 - n}{7 + 3n}$ (v) $a_n = \frac{3^{n+1}}{2^{2n+1}}$ (vi) $a_n = \frac{3^{n-1}}{2^{n+3}}$

Solution:

1.1. We have

$$\left|\frac{n^2}{n^2+n+1} - 1\right| = \left|\frac{-n-1}{n^2+n+1}\right| = \frac{n+1}{n^2+n+1} \le \frac{n+1}{n^2+n} = \frac{1}{n}.$$

Thus,

$$0 \le \left|\frac{n^2}{n^2 + n + 1} - 1\right| \le \frac{1}{n} \to 0 \Longrightarrow \lim_{n \to \infty} \left|\frac{n^2}{n^2 + n + 1} - 1\right| = 0$$

1.2. Suppose that $\lim_{n\to\infty} x_n = x$. Thus, there exists an $M \in \mathbb{N}$ such that $|x_n - x| < 1$ for all $n \ge M$. Let

 $B = \max\{|x_1|, |x_2|, \dots, |x_{M-1}|, |x|+1\}$

If n < M, then $|x_n| \le B$ by construction. If $n \ge M$, then

$$|x_n| \le |x_n - x| + |x| < 1 + |x| \le B.$$

1.3. (i) We separate the two parts via the difference rule.

$$\lim_{n \to \infty} 5 - 0.1^n = \lim_{n \to \infty} 5 - \lim_{n \to \infty} 0.1^n$$

The limit of the constant sequence is that same value. Since $0.1 < 1, 0.1^n$ approaches zero as n gets large.

$$\lim_{n \to \infty} 5 - 0.1^n = \lim_{n \to \infty} 5 - \lim_{n \to \infty} 0.1^n = 5 - 0 = 5$$

- (ii) The first few terms of the sequence are: 2,0,2,0,2,0,2,0,2,0,... This sequence diverges.
- (iii) This sequence converges to zero by the sandwich rule.

$$\lim_{n \to \infty} \left(-\frac{1}{n} \right) = 0 \quad \text{and} \quad \lim_{n \to \infty} \left(\frac{1}{n} \right) = 0$$

Since $-1 \le \sin n \le 1$, $-\frac{1}{n} \le \frac{\sin n}{n} \le \frac{1}{n}$. Thus $\lim_{n \to \infty} \frac{\sin n}{n} = 0$.

(iv)

(v)

$$\lim_{n \to \infty} \frac{2-n}{7+3n} = \lim_{n \to \infty} \frac{\frac{2}{n}-1}{\frac{7}{n}+3} = \frac{\lim_{n \to \infty} \frac{2}{n} - \lim_{n \to \infty} 1}{\lim_{n \to \infty} \frac{7}{n} + \lim_{n \to \infty} 3} = \frac{0-1}{0+3} = -\frac{1}{3}$$
$$\lim_{n \to \infty} \frac{3^{n+1}}{2^{2n+1}} = \lim_{n \to \infty} \frac{3 \cdot 3^n}{2 \cdot 2^{2n}} = \frac{3}{2} \lim_{n \to \infty} \frac{3^n}{(2^2)^n} = \frac{3}{2} \lim_{n \to \infty} \frac{3^n}{4^n} = \frac{3}{2} \lim_{n \to \infty} \left(\frac{3}{4}\right)^n$$
Since $\frac{3}{4} < 1, \left(\frac{3}{4}\right)^n$ approaches 1 as *n* gets large. Thus
$$\frac{3}{2} \lim_{n \to \infty} \left(\frac{3}{4}\right)^n = \frac{3}{2} \cdot 0 = 0$$

$$\lim_{n \to \infty} \frac{3^{n-1}}{2^{n+3}} = \lim_{n \to \infty} \frac{\frac{1}{3} \cdot 3^n}{8 \cdot 2^n} = \frac{1}{24} \lim_{n \to \infty} \frac{3^n}{2^n} = \frac{1}{24} \lim_{n \to \infty} \left(\frac{3}{2}\right)^n$$

Since $\frac{3}{2} > 1$, $\left(\frac{3}{2}\right)^n$ diverges to infinity.

2. Question: Convergence of series (*elementary*)

- **2.1.** Prove the following statement: If $|r| \ge 1$, then $\sum_{n=0}^{\infty} r^n$ diverges.
- **2.2.** Using the result from **2.1** and the identity

$$\sum_{n=0}^{m} r^n = \frac{1 - r^{m+1}}{1 - r},$$

prove that the so-called geometric series $\sum_{n=0}^{\infty} \alpha(r)^n$, with some scalar α , converges to $\frac{\alpha}{1-r}$ if and only if |r| < 1.

2.3. In each of the following cases, decide whether the series is convergent or divergent. If convergent, find its limit.

(i)
$$\sum_{n=0}^{\infty} \frac{2}{3^n}$$

(ii) $\sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^{n+1}$
(iii) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$
(iv) $\sum_{n=1}^{\infty} \frac{1}{n}$ (Attention: The answer might not be what you think)

Solution:

- **2.1.** If $|r| \ge 1$, then $\lim_{m\to\infty} r^m \ne 0$. Therefore, $\sum_{n=0}^{\infty} r^n$ diverges, and if this wasn't the case then $\lim_{m\to\infty} r^m = 0$ by proposition 6.2 which is a contradiction.
- **2.2.** We start by writing the geometric series as a sequence $\{\sum_{n=0}^{m} \alpha(r)^n\}_{m=1}^{\infty}$. From the calculation rule for convergence of sequences, it follows that

$$\lim_{n \to \infty} \sum_{n=0}^{m} \alpha(r)^n = \alpha \lim_{m \to \infty} \sum_{n=0}^{m} (r)^n , \qquad (\star)$$

which clearly diverges if $|r| \ge 1$ from **2.1**.

Furthermore, we have

$$\lim_{m \to \infty} \sum_{n=0}^{m} r^n = \lim_{m \to \infty} \frac{1 - r^{m+1}}{1 - r} \quad \stackrel{\text{by the hint from 1.3}}{=} \quad \frac{1 - 0}{1 - r} = \frac{1}{1 - r}.$$

Finally, using the same reasoning as in (\star) , we get

$$\lim_{m \to \infty} \sum_{n=0}^{m} \alpha(r)^n = \frac{\alpha}{1-r}$$

proving the statement.

2.3.

(i) This is a geometric series with $\alpha = 2$ and $r = \frac{1}{3}$. The sum of the series exists and can be computed as

$$\frac{\alpha}{1-r} = \frac{2}{1-\frac{1}{3}} = \frac{2}{\frac{2}{3}} = 3$$

(ii) Again, this is a geometric sequence, this time with $\alpha = \frac{2}{3}$ and $r = \frac{2}{3}$. The sum of the series exists and can be computed as

$$\frac{\alpha}{1-r} = \frac{\frac{2}{3}}{1-\frac{2}{3}} = \frac{\frac{2}{3}}{\frac{1}{3}} = 2.$$

(iii) This series converges, which we can show directly by considering the sequence $\left\{\sum_{n=1}^{m} \frac{1}{n(n+1)}\right\}_{m=1}^{\infty}$:

$$\sum_{n=1}^{m} \frac{1}{n(n+1)} = \sum_{n=1}^{m} \frac{1}{n} - \frac{1}{n+1}$$
$$= \left(1 + \frac{1}{2} + \dots + \frac{1}{m}\right) - \left(\frac{1}{2} + \dots + \frac{1}{m} + \frac{1}{m+1}\right)$$
$$= 1 - \frac{1}{m+1} \xrightarrow{m \to \infty} 1 - 0 = 1.$$

Therefore, we have

$$\lim_{m \to \infty} \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$

(iv) $\sum_{n=1}^{\infty} \frac{1}{n}$ is called the *harmonic series*. It diverges, for which there are different proofs. The following by Leo Goldmakher is the shortest one I found:

Suppose the harmonic series converges to H, i.e.

$$H = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \cdots$$

Then

$$H \ge 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{8}{\frac{1}{8} + \frac{1}{8}} + \cdots$$
$$= 1 + \frac{1}{2} + \frac{1}{2} + \cdots$$
$$= \frac{1}{2} + H.$$

This contradiction concludes the proof.

3. Question: Limits inferior and superior (*elementary*)

3.1. Calculate the limit superior and limit inferior for the following sequences.

(a)
$$x_n = \frac{1}{n}$$

(b) $x_n = (-1)^n$

- **3.2.** Do the sequences (a) and (b) from above question converge? If so, name their limit.
- **3.3.** The following statement is an important fact:

Let $\{x_n\}$ be a bounded sequence. Then, $\{x_n\}$ converges if and only if $\liminf x_n = \limsup x_n$.

Direction (\Longrightarrow) may be proven via subsequences (see the lecture named under *Helpful Additional Resources*). Prove the other direction, i.e. $\liminf x_n = \limsup x_n \Longrightarrow \{x_n\}$ converges.

Solution:

- 3.1.
- (a) We may do this directly:

$$\sup\{1/k \mid k \ge n\} = \frac{1}{n} \to 0 \Longrightarrow \limsup_{n \to \infty} x_n = 0$$
$$\inf\{1/k \mid k \ge n\} = 0 \to 0 \Longrightarrow \liminf_{n \to \infty} x_n = 0$$

(b) Notice that $\{(-1)^k \mid l \ge n\} = \{-1, 1\}$. Thus, the supremum of these sets is always 1 and the infimum is always -1. Therefore,

$$\limsup_{n \to \infty} x_n = 1 \text{ and } \liminf_{n \to \infty} x_n = -1$$

3.2. Clearly, the sequence $x_n = (-1)^n$ does not converge. Meanwhile, the sequence $x_n = \frac{1}{n}$ converges to 0 by the following:

Let
$$\epsilon > 0$$
. Choose $M \in \mathbb{N}$ such that $M^{-1} > \epsilon^{-1}$. Hence, for all $n \ge M$, $\left|\frac{1}{n} - 0\right| = \frac{1}{n} \le \frac{1}{M} \le \epsilon$.

Note that this perfectly aligned with the statement you are asked to partially prove next.

3.3. (\Leftarrow) Suppose $\liminf x_n = \limsup x_n$. Then, $\forall n \in \mathbb{N}$,

$$\inf \{x_k \mid k \ge n\} \le x_n \le \sup \{x_k \mid k \ge n\}$$

By the Squeeze Theorem, since $\lim_{k\to\infty} \inf \{x_k \mid k \ge n\} = \lim_{k\to\infty} \sup \{x_k \mid k \ge n\}$ by assumption, we have

$$\lim_{n \to \infty} x_n = \liminf x_n = \limsup x_n.$$

Therefore, x_n converges.

4. Question: Differentiability of real-valued functions (*elementary*)

4.1. Prove that for the function f(x) = ax + b,

$$f'(c) = a \quad \forall c \in \mathbb{R}$$

4.2. Is the function

$$f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto \begin{cases} 1/x & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

differentiable at $x \neq 0$? What about x = 0?

4.3. Use the Mean Value Theorem to prove the following statement: If $f: I \to \mathbb{R}$ is differentiable and f'(x) = 0 for all $x \in I$, then f is constant.

Solution:

4.1. This follows as

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{ax + b - (ac + b)}{x - c} = a \lim_{x \to c} \frac{x - c}{x - c} = \lim_{x \to c} a = a.$$

4.2. f is differentiable at $x \neq 0$ with derivative $f'(x) = -1/x^2$ since

$$\lim_{h \to 0} \left[\frac{f(c+h) - f(c)}{h} \right] = \lim_{h \to 0} \left[\frac{1/(c+h) - 1/c}{h} \right]$$
$$= \lim_{h \to 0} \left[\frac{c - (c+h)}{hc(c+h)} \right]$$
$$= -\lim_{h \to 0} \frac{1}{c(c+h)}$$
$$= -\frac{1}{c^2}.$$

However, f is not differentiable at 0 since the limit

$$\lim_{h \to 0} \left[\frac{f(h) - f(0)}{h} \right] = \lim_{h \to 0} \left[\frac{1/h - 0}{h} \right] = \lim_{h \to 0} \frac{1}{h^2}$$

does not exist.

4.3. Let $a, b \in I$ with a < b. Then, f is continuous on [a, b] and differentiable on (a, b). Therefore, $\exists c \in (a, b)$ such that f(b) - f(a) = (b - a)f'(c) = 0. Hence, f(b) = f(a) for all $a, b \in I$ such that a < b.

5. Question: Differentiability and Continuity (*slightly advanced*)

Recall that we already defined the concept of continuous functions in the first Tutorial session using the **epsilon-delta criterion**. For a function $f: S \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ we can re-write it as follows:

The function f is continuous on S if

 $\forall c \in S \text{ and } \forall \epsilon > 0, \exists \delta = \delta(\epsilon, c) > 0 \text{ such that } \forall x \in S, |x - c| < \delta \Longrightarrow |f(x) - f(c)| < \epsilon.$

Here, $\delta(\epsilon, c)$ denotes the fact that δ can depend on ϵ and c.

- 5.1. Does a function f: S ⊆ R → R being continuous imply that f is differentiable? Prove your answer using the function f(x) := |x|. *Hint: You might need the reverse triangle inequality:* ||x| |x₀|| ≤ |x x₀|.
- **5.2.** Show that the converse it true, i.e. if $f: S \subseteq \mathbb{R} \to \mathbb{R}$ is differentiable at $c \in S$, then f is continuous at c.

Solution:

5.1. No. We can prove this by giving a counter example, namely f(x) := |x| (also shown in an Illustration from the Booklet).

Step 1: Prove continuity.

Let $x_0 \in \mathbb{R}$ be arbitrary. Let $\epsilon > 0$. Let $\delta = \epsilon > 0$. Then for any $x \in \mathbb{R}$ with $0 < |x - x_0| < \delta$, we trivially have $||x| - |x_0|| \le |x - x_0| < \epsilon$ by our choice of $\delta = \epsilon$.

Step 2: Prove non-differentiability.

We find a sequence $x_n \to 0$ such that $\lim_{n\to\infty} \frac{f(x_n)-f(0)}{x_n-0}$ does not exist. Let $x_n = \frac{(-1)^n}{n}$. Then, $\lim_{n\to\infty} x_n = 0$. However,

$$\frac{f(x_n) - f(0)}{x_n - 0} = \frac{|(-1)^n / n|}{(-1)^n / n} = (-1)^n$$

and $\lim_{n\to\infty} (-1)^n$ does not exist.

5.2. f is continuous at $c \in S \iff \lim_{x \to c} f(x) = f(c)$. Now,

$$\lim_{x \to c} f(x) = \lim_{x \to c} (f(x) - f(c) + f(c))$$

=
$$\lim_{x \to c} \left((x - c) \frac{f(x) - f(c)}{x - c} + f(c) \right)$$

=
$$0 \cdot f'(c) + f(c) = f(c).$$

If you have any questions or feedback, please feel free to contact me via E-mail at hannah.kuempel@stat.uni-muenchen.de!!

Also, thank you Dr. Casey Rodriguez and Marta Hidegkuti whose exercises this sheet was inspired by.