1. Question: Inner product and orthonormal basis of \mathbb{R}^n (*elementary*)

- **1.1.** Show that the dot product for vectors, i.e. $\mathbf{x}^{\top}\mathbf{y}$ with $\mathbf{x}, \mathbf{y} \in V$ for some vector space V, is an inner product. Which norm and metric does it induce?
- **1.2.** Can you think of a definition of an inner product $\langle \cdot, \cdot \rangle_{\text{ex}}$ that isn't the dot product $\langle \cdot, \cdot \rangle_{\text{dot}}$? If two vectors are orthogonal in $(V, \langle \cdot, \cdot \rangle_{\text{dot}})$, are they also orthogonal in $(V, \langle \cdot, \cdot \rangle_{\text{ex}})$?
- **1.3.** Show that, for some inner product space $(V, \langle \cdot, \cdot \rangle)$ with zero element **0**, the following holds: All vectors $\mathbf{v} \in V$ are orthogonal to **0**, and **0** is the only vector in V that is orthogonal to itself.

Solution:

1.1. Let us assume that all vectors in V have n entries. We can easily verify that the dot product fulfills all properties of an inner product:

1. Clearly,
$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^\top \mathbf{y} = \sum_{i=1}^n x_i y_i = \sum_{i=1}^n y_i x_i = \mathbf{y}^\top \mathbf{x} = \langle \mathbf{y}, \mathbf{x} \rangle.$$

2.

$$\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = (\mathbf{x} + \mathbf{y})^T \mathbf{z} = (\mathbf{x}^T + \mathbf{y}^T) \mathbf{z} = \mathbf{x}^T \mathbf{z} + \mathbf{y}^T \mathbf{z} = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle,$$

where we have used that matrix multiplication distributes over addition.

3. Clearly, for a scalar c, $\langle c\mathbf{x}, \mathbf{y} \rangle = (c\mathbf{x})^{\top}\mathbf{y} = \sum_{i=1}^{n} (cx_i)y_i = \sum_{i=1}^{n} c(x_iy_i) = c(\mathbf{x}^{\top}\mathbf{y}) = c\langle \mathbf{x}, \mathbf{y} \rangle$. 4.

$$\langle \mathbf{x}, \mathbf{x} \rangle = \mathbf{x}^T \mathbf{x} = x_1^2 + x_2^2 + \dots + x_n^2 \ge 0$$

with equality if and only if $x_i = 0 \forall i \in \{1, ..., n\}$, that is, $\mathbf{x} = \mathbf{0}$. Furthermore, the dot product induces the euclidean norm and distance, which we can also easily verify:

$$\sqrt{\mathbf{x}^{\top}\mathbf{x}} = \sqrt{\sum_{i=1}^{n} x_i^2} \text{ and } \sqrt{(\mathbf{x} - \mathbf{y})^{\top}(\mathbf{x} - \mathbf{y})} = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$

1.2. One example would be $\langle \boldsymbol{x}, \boldsymbol{y} \rangle := \boldsymbol{x}^\top \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \boldsymbol{y}$. No, the angles between vectors can generally var

No, the angles between vectors can generally vary across different inner products. See question 2.2 for an example.

1.3. First, we note that the fact that **0** is the only vector orthogonal to itself follows immediately from the definition of inner products, which states that $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ if and only if $\mathbf{u} = \mathbf{0}$. Furthermore, combining this fact with the third and second properties of inner products, we get

$$0 = \langle \mathbf{v} - \mathbf{v}, \mathbf{0} \rangle = \langle \mathbf{v}, \mathbf{0} \rangle + \langle -\mathbf{v}, \mathbf{0} \rangle$$

So both $\langle \mathbf{v}, \mathbf{0} \rangle$ and $\langle -\mathbf{v}, \mathbf{0} \rangle$ must be equal to 0 for all vectors $\mathbf{v} \in V$, which proves that all vectors $\mathbf{v} \in V$ are orthogonal to $\mathbf{0}$.

2. Question: Angles between Vectors and Projection onto a Line (*elementary*)

- **2.1.** Find the angle in between vectors $\mathbf{a} = (8, -2, 16)^{\top}$ and $\mathbf{b} = (-9, 8, 12)^{\top}$ in radian and degrees.
- **2.2.** Calculate the angle between the vectors $\boldsymbol{x} = [1,1]^{\top}, \boldsymbol{y} = [-1,1]^{\top} \in \mathbb{R}^2$ with regards to both the dot product and the inner product defined as

$$\langle \boldsymbol{x}, \boldsymbol{y}
angle := \boldsymbol{x}^{ op} \left[egin{array}{cc} 2 & 0 \ 0 & 1 \end{array}
ight] \boldsymbol{y}$$
 .

- **2.3.** Let $\mathbf{y} = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$. Find the orthogonal projection of \mathbf{y} onto \mathbf{u} . Then write \mathbf{y} as the sum of two orthogonal vectors, one in span $\{\mathbf{u}\}$ and one orthogonal to \mathbf{u} .
- 2.4. Project

(i) the vector
$$\begin{pmatrix} 2\\ -1\\ 4 \end{pmatrix}$$
 orthogonally onto the line $\begin{cases} c \begin{pmatrix} -3\\ 1\\ -3 \end{pmatrix} \mid c \in \mathbb{R} \end{cases}$
(ii) $\begin{pmatrix} -1\\ -1 \end{pmatrix}$ orthogonally onto the line $y = 3x$.

Solution:

2.1.

$$\cos \omega = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} = \frac{8 \times (-9) + (-2) \times 8 + 16 \times 12}{\sqrt{8^2 + (-2)^2 + 16^2} \cdot \sqrt{(-9)^2 + 8^2 + 12^2}}$$
$$= \frac{104}{18 \cdot 17} = \frac{104}{306}$$
$$\implies \omega = \arccos\left(\frac{104}{306}\right) \approx 1.22.$$

So the angle is $\approx 1.22\,\mathrm{radian}\approx 68^\circ$

2.2. For the dot product, we can immediately infer from

$$\begin{bmatrix} 1\\1 \end{bmatrix} \cdot \begin{bmatrix} -1\\1 \end{bmatrix} = -1 + 1 = 0$$

that ${\bf x}$ and ${\bf y}$ are orthogonal, so the angle between them equals 90°.

Meanwhile, for $\langle \boldsymbol{x}, \boldsymbol{y} \rangle := \boldsymbol{x}^{\top} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \boldsymbol{y}$ we get that the angle ω between \boldsymbol{x} and \boldsymbol{y} is given by

$$\cos \omega = \frac{\langle \boldsymbol{x}, \boldsymbol{y} \rangle}{\|\boldsymbol{x}\| \|\boldsymbol{y}\|} = -\frac{1}{3} \Longrightarrow \omega \approx 1.91 \text{rad} \approx 109.5^{\circ},$$

and \boldsymbol{x} and \boldsymbol{y} are not orthogonal.

2.3. Compute

$$\mathbf{y} \cdot \mathbf{u} = \begin{bmatrix} 7\\6 \end{bmatrix} \cdot \begin{bmatrix} 4\\2 \end{bmatrix} = 40$$
$$\mathbf{u} \cdot \mathbf{u} = \begin{bmatrix} 4\\2 \end{bmatrix} \cdot \begin{bmatrix} 4\\2 \end{bmatrix} = 20$$

The orthogonal projection of ${\bf y}$ onto ${\bf u}$ is

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} = \frac{40}{20} \mathbf{u} = 2 \begin{bmatrix} 4\\2 \end{bmatrix} = \begin{bmatrix} 8\\4 \end{bmatrix}$$

and the component of ${\bf y}$ orthogonal to ${\bf u}$ is

$$\mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} 7\\6 \end{bmatrix} - \begin{bmatrix} 8\\4 \end{bmatrix} = \begin{bmatrix} -1\\2 \end{bmatrix}$$

The sum of these two vectors is \mathbf{y} . That is,

$$\left[\begin{array}{c}7\\6\\y\end{array}\right] = \left[\begin{array}{c}8\\4\\\frac{\uparrow}{y}\end{array}\right] + \left[\begin{array}{c}-1\\2\\\frac{\uparrow}{y}\end{array}\right]$$

This decomposition of \mathbf{y} is illustrated in Figure 3. Note: If the calculations above are correct, then $\{\hat{\mathbf{y}}, \mathbf{y} - \hat{\mathbf{y}}\}$ will be an orthogonal set. As a check, compute

$$\hat{\mathbf{y}} \cdot (\mathbf{y} - \hat{\mathbf{y}}) = \begin{bmatrix} 8\\4 \end{bmatrix} \cdot \begin{bmatrix} -1\\2 \end{bmatrix} = -8 + 8 = 0$$

2.4. (i)
$$\frac{\begin{pmatrix} 2\\-1\\4 \end{pmatrix} \cdot \begin{pmatrix} -3\\1\\-3 \end{pmatrix}}{\begin{pmatrix} -3\\1\\-3 \end{pmatrix} \cdot \begin{pmatrix} -3\\1\\-3 \end{pmatrix}} \cdot \begin{pmatrix} -3\\1\\-3 \end{pmatrix} = \frac{-19}{19} \cdot \begin{pmatrix} -3\\1\\-3 \end{pmatrix} = \begin{pmatrix} 3\\-1\\3 \end{pmatrix}$$

(ii) Writing the line as $\left\{ c \cdot {\binom{1}{3}} \mid c \in \mathbb{R} \right\}$ gives this projection:

$$\frac{\binom{-1}{-1} \cdot \binom{1}{3}}{\binom{1}{3} \cdot \binom{1}{3}} \cdot \binom{1}{3} = \frac{-4}{10} \cdot \binom{1}{3} = \binom{-2/5}{-6/5}$$

3. Question: Gram-Schmidt Process (*elementary*)

3.1. Carry out the Gram-Schmidt orthonormalization process on the following pair of vectors in \mathbb{R}^2 to obtain an orthonormal basis:

$$\left[\begin{array}{c}2\\1\end{array}\right] \text{ and } \left[\begin{array}{c}-1\\3\end{array}\right].$$

3.2. Carry out the Gram-Schmidt orthonormalization process on the following three vectors in \mathbb{R}^3 to obtain an orthonormal basis:

$$\begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 8\\1\\-6 \end{bmatrix}, \text{ and } \begin{bmatrix} 0\\0\\1 \end{bmatrix}.$$

3.3. Perform an Eigendecomposition of the following matrix. How do the spectral theorem and the Gram-Schmidt process help you here?

$$\boldsymbol{A} = \left[\begin{array}{rrrr} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{array} \right] \,.$$

(You may use the fact that $det(\mathbf{A} - \lambda \mathbf{I}) = -(\lambda - 1)^2(\lambda - 7)$ to save time.)

Solution:

3.1. We apply the Gram-Schmidt algorithm with $\mathbf{b}_1 \begin{bmatrix} 2\\1 \end{bmatrix}$ and $\mathbf{b}_2 \begin{bmatrix} -1\\3 \end{bmatrix}$. First, set $u_1 := \mathbf{b}_1$ and normalize it:

$$\|\mathbf{b}_1\| = \sqrt{2^2 + 1^2} = \sqrt{5}$$

$$\implies w_1 = \frac{1}{\sqrt{5}}(2, 1) = \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$$

Second, find w_2 :

$$\mathbf{b}_{2} - \frac{\langle \mathbf{b}_{1}, u_{1} \rangle}{\langle u_{1}, u_{1} \rangle} \mathbf{b}_{1} = (-1, 3) - \frac{(-1, 3) \cdot (2, 1)}{(2, 1) \cdot (2, 1)} (2, 1)$$
$$= (-1, 3) - \frac{1}{5} (2, 1)$$
$$= \left(-\frac{7}{5}, \frac{14}{5}\right)$$
$$= \left(-\frac{7}{5}, \frac{14}{5}\right)$$
Since $\left| \left(-\frac{7}{5}, \frac{14}{5}\right) \right| = \frac{7}{\sqrt{5}}$ it follows that $w_{2} = \frac{\sqrt{5}}{7} \left(-\frac{7}{5}, \frac{14}{5}\right)$
$$= \left(-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$$

Now w_1, w_2 constitute an orthonormal basis for \mathbb{R}^2 .

3.2. We apply the Gram-Schmidt algorithm with $\mathbf{b}_1 = \begin{bmatrix} 1\\ 2\\ 0 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} 8\\ 1\\ -6 \end{bmatrix}$, $\mathbf{b}_3 = \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}$.

$$\begin{aligned} u_{1} &= \mathbf{b}_{1} = \begin{bmatrix} 1\\ 2\\ 0 \end{bmatrix} \text{ and } w_{1} = \frac{\mathbf{b}_{1}}{\|\mathbf{b}_{1}\|} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1\\ 2\\ 0 \end{bmatrix} \\ u_{2} &= \mathbf{b}_{2} - \frac{\langle \mathbf{b}_{2}, u_{1} \rangle}{\langle u_{1}, u_{1} \rangle} u_{1} = \begin{bmatrix} 8\\ 1\\ -6 \end{bmatrix} - \frac{\left\langle \begin{bmatrix} 8\\ 1\\ -6 \end{bmatrix}, \begin{bmatrix} 1\\ 2\\ 0 \end{bmatrix}, \begin{bmatrix} 1\\ 2\\ 0 \end{bmatrix} \right\rangle}{\left\langle \begin{bmatrix} 1\\ 2\\ 0 \end{bmatrix}, \begin{bmatrix} 1\\ 2\\ 0 \end{bmatrix} \right\rangle} \begin{bmatrix} 1\\ 2\\ 0 \end{bmatrix} = \begin{bmatrix} 8\\ 1\\ -6 \end{bmatrix} - \frac{10}{5} \begin{bmatrix} 1\\ 2\\ 0 \end{bmatrix} = \begin{bmatrix} 6\\ -3\\ -6 \end{bmatrix} \\ \end{aligned} \\ w_{2} &= \frac{u_{2}}{\|u_{2}\|} = \frac{1}{9} \begin{bmatrix} -6\\ -3\\ -6 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2\\ -1\\ -2 \end{bmatrix} \\ u_{3} &= \mathbf{b}_{3} - \frac{\langle \mathbf{b}_{3}, u_{1} \rangle}{\langle u_{1}, u_{1} \rangle} u_{1} - \frac{\langle \mathbf{b}_{3}, u_{2} \rangle}{\langle u_{2}, u_{2} \rangle} u_{2} = \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix} - \frac{\left\langle \begin{bmatrix} 0\\ 0\\ 1\\ 2\\ 0 \end{bmatrix}, \begin{bmatrix} 1\\ 2\\ 0\\ 2\\ 0 \end{bmatrix} \right\rangle}{\left\langle \begin{bmatrix} 1\\ 2\\ 0\\ 1 \end{bmatrix}, \begin{bmatrix} 6\\ -3\\ -6 \end{bmatrix}, \begin{bmatrix} 6\\ -3\\ -6 \end{bmatrix} \right\rangle} \begin{bmatrix} 6\\ -3\\ -6 \end{bmatrix} \\ = \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix} - \frac{0}{5} \begin{bmatrix} 1\\ 2\\ 0\\ 0 \end{bmatrix} - \frac{-6}{61} \begin{bmatrix} 6\\ -3\\ -6 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 4\\ -2\\ 5 \end{bmatrix} \\ \implies w_{3} &= \frac{u_{3}}{\|u_{3}\|} = \frac{1}{3\sqrt{5}} \begin{bmatrix} -\frac{4}{2}\\ -\frac{4}{5} \end{bmatrix} \end{aligned}$$

3.3. The characteristic polynomial of A is

$$p_{\mathbf{A}}(\lambda) = -(\lambda - 1)^2(\lambda - 7),$$

so that we obtain the eigenvalues $\lambda_1 = 1$ and $\lambda_2 = 7$, where λ_1 is a repeated eigenvalue. Following

our standard procedure for computing eigenvectors, we obtain the eigenspaces

$$E_1 = \operatorname{span}\left\{ \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \underbrace{\begin{bmatrix} -1\\0\\1 \end{bmatrix}}_{=:\boldsymbol{x}_1} \right\}, \quad E_7 = \operatorname{span}\left\{ \underbrace{\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}}_{=:\boldsymbol{x}_3} \right\}.$$

We see that x_3 is orthogonal to both x_1 and x_2 . However, since $x_1^{\top}x_2 = 1 \neq 0$, they are not orthogonal. The **spectral theorem** states that there exists an orthogonal basis, but the one we have is not orthogonal. However, we can construct one.

To construct such a basis, we exploit the fact that x_1, x_2 are eigenvectors associated with the same eigenvalue λ . Therefore, for any $\alpha, \beta \in \mathbb{R}$ it holds that

$$\boldsymbol{A}(\alpha \boldsymbol{x}_1 + \beta \boldsymbol{x}_2) = \boldsymbol{A} \boldsymbol{x}_1 \alpha + \boldsymbol{A} \boldsymbol{x}_2 \beta = \lambda (\alpha \boldsymbol{x}_1 + \beta \boldsymbol{x}_2),$$

i.e., any linear combination of x_1 and x_2 is also an eigenvector of A associated with λ . The **Gram-Schmidt algorithm** is a method for iteratively constructing an orthogonal/orthonormal basis from a set of basis vectors using such linear combinations. Therefore, even if x_1 and x_2 are not orthogonal, we can apply the Gram-Schmidt algorithm and find eigenvectors associated with $\lambda_1 = 1$ that are orthogonal to each other (and to x_3). In our example, without normalization, we will obtain

$$oldsymbol{x}_1' = \left[egin{array}{c} -1 \\ 1 \\ 0 \end{array}
ight], \quad oldsymbol{x}_2' = rac{1}{2} \left[egin{array}{c} -1 \\ -1 \\ 2 \end{array}
ight]$$

which are orthogonal to each other, orthogonal to x_3 , and eigenvectors of A associated with $\lambda_1 = 1$. Lastly, we can normalize, x'_1 , x'_2 and x_3 to obtain an orthogonal <u>and thereby easily invertible</u> matrix with eigenvectors as columns:

$$\mathbf{P} := \begin{bmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$

and we get the following eigendecomposition:

$$\mathbf{A} = \mathbf{P} \operatorname{diag}(1, 1, 7) \mathbf{P}^{\top} = \begin{bmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 7 \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}} & 1\frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix} .$$

4. Question: Projection onto general Subspaces (*elementary*)

- **4.1.** How does the formula for orthogonal projection onto subspaces from definition 5.7 simplify if the given basis is not only orthogonal but orthonormal?
- **4.2.** In \mathbb{R}^3 , let

$$W = \operatorname{span}\left\{ \begin{pmatrix} 1\\1\\2 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1 \end{pmatrix} \right\}$$

be the subspace spanned by the vectors $(1,1,2)^{\top}$ and $(1,1,-1)^{\top}$. What point of W is closest to the vector $(4,5,-2)^{\top}$?

4.3. In \mathbb{R}^3 , find the orthogonal projection of $(2,2,5)^{\top}$ on the subspace

$$W = \operatorname{span} \left\{ \begin{pmatrix} 2\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\2\\1 \end{pmatrix} \right\} \,.$$

4.4. Let $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m\}$ be an orthonormal basis of the subspace $W \subset V$. Prove that the vectors $(v - \operatorname{pr}_W(v))$ and \mathbf{w}_k are orthogonal $\forall v \in V, k = 1, \dots, m$; and hence $v - \operatorname{pr}_W(v)$ is orthogonal to every vector in W.

Solution:

4.1. All vectors \mathbf{w}_j in an orthonormal basis have length one, i.e. $\langle \mathbf{w}_j, \mathbf{w}_j \rangle = 1$, so the formula simplifies to

$$\operatorname{proj}_{W}(\mathbf{v}) = \pi_{W}(\mathbf{v}) = \sum_{j=1}^{m} \langle \mathbf{v}, \mathbf{w}_{j} \rangle \mathbf{w}_{j}$$

4.2. Clearly, $(1,1,2)^{\top}$ and $(1,1,-1)^{\top}$ are already orthogonal, so we can immediately use the formula from from definition 5.7. Let

$$w_1 = (1, 1, 2)$$

$$w_2 = (1, 1, -1)$$

$$W = \text{Span}(w_1, w_2)$$

$$v = (4, 5, -2)$$

Since $w_1 \perp w_2$, the projection of v onto W is as follows.

$$\operatorname{proj}_{w_1} v = \frac{w_1 \cdot v}{w_1 \cdot w_1} w_1 = \frac{5}{6} (1, 1, 2) = \left(\frac{5}{6}, \frac{5}{6}, \frac{10}{6}\right)$$
$$\operatorname{proj}_{w_2} v = \frac{w_2 \cdot v}{w_2 \cdot w_2} w_2 = \frac{11}{3} (1, 1, -1) = \left(\frac{11}{3}, \frac{11}{3}, -\frac{11}{3}\right)$$
$$\operatorname{proj}_W v = \operatorname{proj}_{w_1} v + \operatorname{proj}_{w_2} v$$
$$= \left(\frac{27}{6}, \frac{27}{6}, -\frac{6}{3}\right) = \left(\frac{9}{2}, \frac{9}{2}, -2\right)$$

Hence $\left(\frac{9}{2}, \frac{9}{2}, -2\right)^{\top}$ is the closest vector.

4.3. Let

$$v_1 = (2, 1, 1),$$

 $v_2 = (0, 2, 1),$
 $v = (2, 2, 5),$
 $W = \text{Span}(v_1, v_2)$

Since v_1 and v_2 are not orthogonal to each other, we have to find an orthogonal basis for W. The GramSchmidt orthogonalization gives us the following:

$$\|v_1\| = \sqrt{6}$$

$$u_1 = \frac{1}{\sqrt{6}}(2, 1, 1)$$

$$v_2 - \operatorname{proj}_{v_1} v_2 = (0, 2, 1) - \left(1, \frac{1}{2}, \frac{1}{2}\right) = \left(-1, \frac{3}{2}, \frac{1}{2}\right)$$

$$\left\|\left(-1, \frac{3}{2}, \frac{1}{2}\right)\right\| = \sqrt{1 + \frac{9}{4} + \frac{1}{4}} = \sqrt{\frac{14}{4}} = \frac{\sqrt{14}}{2}$$

$$u_2 = \frac{2}{\sqrt{14}} \left(-1, \frac{3}{2}, \frac{1}{2}\right) = \left(-\frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}\right)$$

Hence u_1, u_2 constitutes an orthonormal basis for W. Now we find the projection of v onto W:

$$proj_{u_1} v = (u_1 \cdot v) u_1 = \frac{11}{6} (2, 1, 1) = \left(\frac{11}{3}, \frac{11}{6}, \frac{11}{6}\right) proj_{u_2} v = (u_2 \cdot v) u_2 = 1 \left(-1, \frac{3}{2}, \frac{1}{2}\right) = \left(-1, \frac{3}{2}, \frac{1}{2}\right), proj_W v = proj_{u_1} v + proj_{u_2} v = \left(\frac{11}{3} - 1, \frac{11}{6} + \frac{3}{2}, \frac{11}{6} + \frac{1}{2}\right) = \left(\frac{8}{3}, \frac{10}{3}, \frac{7}{3}\right)$$

Therefore $\left(\frac{8}{3}, \frac{10}{3}, \frac{7}{3}\right)^{\top}$ is the closest vector.

4.4. This is a straightforward calculation:

$$\begin{aligned} \langle v - \mathrm{pr}_{W}(v), u_{k} \rangle &= \langle v, u_{k} \rangle - \langle \mathbf{pr}_{W}(v), u_{k} \rangle \\ &= \langle v, u_{k} \rangle - \left\langle \sum_{j=1}^{m} \langle v, u_{j} \rangle \, u_{j}, u_{k} \right\rangle \\ &= \langle v, u_{k} \rangle - \sum_{j=1}^{m} \langle v, u_{j} \rangle \, \langle u_{j}, u_{k} \rangle \\ &= \langle v, u_{k} \rangle - \langle v, u_{k} \rangle \, \langle u_{k}, u_{k} \rangle = 0 \end{aligned}$$

The transition from line 3 to line 4 is justified by the orthogonality of the u's; the last step requires that the u's be unit vectors.

The second assertion of the lemma follows from the fact that every element of W can be written as a linear combination of the orthonormal basis vectors.

If you have any questions or feedback, please feel free to contact me via E-mail at hannah.kuempel@stat.uni-muenchen.de!!

Also, thank you to the authors of the books *Linear Algebra and Its Applications & Mathematics for Machine Learning* as well as I Seul Bee whose exercises this sheet was inspired by.