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1. Question: Inner product and orthonormal basis of Rn

(elementary)

1.1. Show that the dot product for vectors, i.e. x⊤y with x, y ∈ V for some vector space V , is an inner
product. Which norm and metric does it induce?

1.2. Can you think of a definition of an inner product ⟨·, ·⟩ex that isn’t the dot product ⟨·, ·⟩dot?
If two vectors are orthogonal in (V, ⟨·, ·⟩dot), are they also orthogonal in (V, ⟨·, ·⟩ex)?

1.3. Show that, for some inner product space (V, ⟨·, ·⟩) with zero element 0, the following holds: All vectors
v ∈ V are orthogonal to 0, and 0 is the only vector in V that is orthogonal to itself.

Solution:

1.1. Let us assume that all vectors in V have n entries. We can easily verify that the dot product fulfills
all properties of an inner product:

1. Clearly, ⟨x,y⟩ = x⊤y =
∑n

i=1 xiyi =
∑n

i=1 yixi = y⊤x = ⟨y,x⟩.
2.

⟨x+ y, z⟩ = (x+ y)T z =
(
xT + yT

)
z = xT z+ yT z = ⟨x, z⟩+ ⟨y, z⟩,

where we have used that matrix multiplication distributes over addition.

3. Clearly, for a scalar c, ⟨cx,y⟩ = (cx)⊤y =
∑n

i=1(cxi)yi =
∑n

i=1 c(xiyi) = c(x⊤y) = c⟨x,y⟩.
4.

⟨x,x⟩ = xTx = x2
1 + x2

2 + · · ·+ x2
n ≥ 0

with equality if and only if xi = 0 ∀i ∈ {1, . . . , n}, that is, x = 0. Furthermore, the dot product
induces the euclidean norm and distance, which we can also easily verify:

√
x⊤x =

√∑n
i=1 x

2
i and

√
(x− y)⊤(x− y) =

√∑n
i=1(xi − yi)2.

1.2. One example would be ⟨x,y⟩ := x⊤
[

2 0
0 1

]
y.

No, the angles between vectors can generally vary across different inner products. See question 2.2
for an example.

1.3. First, we note that the fact that 0 is the only vector orthogonal to itself follows immediately from
the definition of inner products, which states that ⟨u,u⟩ = 0 if and only if u = 0.
Furthermore, combining this fact with the third and second properties of inner products, we get

0 = ⟨v − v,0⟩ = ⟨v,0⟩+ ⟨−v,0⟩ ,

So both ⟨v,0⟩ and ⟨−v,0⟩ must be equal to 0 for all vectors v ∈ V , which proves that all vectors
v ∈ V are orthogonal to 0.

2. Question: Angles between Vectors and Projection onto a Line
(elementary)

2.1. Find the angle in between vectors a = (8,−2, 16)⊤ and b = (−9, 8, 12)⊤ in radian and degrees.

2.2. Calculate the angle between the vectors x = [1, 1]⊤,y = [−1, 1]⊤ ∈ R2 with regards to both the dot
product and the inner product defined as

⟨x,y⟩ := x⊤
[

2 0
0 1

]
y .
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2.3. Let y =

[
7
6

]
and u =

[
4
2

]
. Find the orthogonal projection of y onto u. Then write y as the sum

of two orthogonal vectors, one in span{u} and one orthogonal to u.

2.4. Project

(i) the vector

 2
−1
4

 orthogonally onto the line

c

 −3
1
−3

∣∣∣∣∣∣ c ∈ R


(ii)

(
−1
−1

)
orthogonally onto the line y = 3x.

Solution:

2.1.

cosω =
a · b
|a||b|

=
8× (−9) + (−2)× 8 + 16× 12√

82 + (−2)2 + 162 ·
√

(−9)2 + 82 + 122

=
104

18 · 17
=

104

306

=⇒ ω = arccos

(
104

306

)
≈ 1.22.

So the angle is ≈ 1.22 radian ≈ 68◦

2.2. For the dot product, we can immediately infer from[
1
1

]
·
[
−1
1

]
= −1 + 1 = 0

that x and y are orthogonal, so the angle between them equals 90◦.

Meanwhile, for ⟨x,y⟩ := x⊤
[

2 0
0 1

]
y we get that the angle ω between x and y is given by

cosω =
⟨x,y⟩
∥x∥∥y∥

= −1

3
=⇒ ω ≈ 1.91rad ≈ 109.5◦,

and x and y are not orthogonal.

2.3. Compute

y · u =

[
7
6

]
·
[

4
2

]
= 40

u · u =

[
4
2

]
·
[

4
2

]
= 20

The orthogonal projection of y onto u is

ŷ =
y · u
u · u

u =
40

20
u = 2

[
4
2

]
=

[
8
4

]
and the component of y orthogonal to u is

y − ŷ =

[
7
6

]
−
[

8
4

]
=

[
−1
2

]
The sum of these two vectors is y. That is,[

7
6

]
↑
y

=

[
8
4

]
↑
ŷ

+

[
−1
2

]
↑

(y−ŷ)
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This decomposition of y is illustrated in Figure 3. Note: If the calculations above are correct, then
{ŷ,y − ŷ} will be an orthogonal set. As a check, compute

ŷ · (y − ŷ) =

[
8
4

]
·
[

−1
2

]
= −8 + 8 = 0

2.4. (i)


2
−1
4

·


−3
1
−3




−3
1
−3

·


−3
1
−3


·

 −3
1
−3

 =
−19

19
·

 −3
1
−3

 =

 3
−1
3



(ii) Writing the line as
{
c ·

(
1
3

)∣∣ c ∈ R
}
gives this projection:(−1

−1

)
·
(
1
3

)(
1
3

)
·
(
1
3

) ·
(
1

3

)
=

−4

10
·
(
1

3

)
=

(
−2/5

−6/5

)

3. Question: Gram-Schmidt Process (elementary)

3.1. Carry out the Gram-Schmidt orthonormalization process on the following pair of vectors in R2 to
obtain an orthonormal basis: [

2
1

]
and

[
−1
3

]
.

3.2. Carry out the Gram-Schmidt orthonormalization process on the following three vectors in R3 to obtain
an orthonormal basis:  1

2
0

 ,

 8
1

−6

 , and

 0
0
1

 .

3.3. Perform an Eigendecomposition of the following matrix. How do the spectral theorem and the Gram-
Schmidt process help you here?

A =

 3 2 2
2 3 2
2 2 3

 .

(You may use the fact that det(A− λI) = −(λ− 1)2(λ− 7) to save time.)

Solution:

3.1. We apply the Gram-Schmidt algorithm with b1

[
2
1

]
and b2

[
−1
3

]
.

First, set u1 := b1 and normalize it:

∥b1∥ =
√

22 + 12 =
√
5

=⇒ w1 =
1√
5
(2, 1) =

(
2√
5
,
1√
5

)
.

3



Hannah Schulz-Kümpel
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Second, find w2 :

b2 −
⟨b1, u1⟩
⟨u1, u1⟩

b1 = (−1, 3)− (−1, 3) · (2, 1)
(2, 1) · (2, 1)

(2, 1)

= (−1, 3)− 1

5
(2, 1)

=

(
−7

5
,
14

5

)
Since

∣∣∣∣(−7

5
,
14

5

)∣∣∣∣ = 7√
5

it follows that w2 =

√
5

7

(
−7

5
,
14

5

)
=

(
− 1√

5
,
2√
5

)
Now w1, w2 constitute an orthonormal basis for R2.

3.2. We apply the Gram-Schmidt algorithm with b1 =

 1
2
0

 , b2 =

 8
1

−6

 , b3 =

 0
0
1

.

u1 = b1 =

 1
2
0

 and w1 =
b1

∥b1∥
=

1√
5

 1
2
0



u2 = b2 −
⟨b2, u1⟩
⟨u1, u1⟩

u1 =

 8
1

−6

−

〈 8
1

−6

 ,

 1
2
0

〉
〈 1

2
0

 ,

 1
2
0

〉
 1

2
0

 =

 8
1

−6

− 10

5

 1
2
0

 =

 6
−3
−6



=⇒ w2 =
u2

∥u2∥
=

1

9

 6
−3
−6

 =
1

3

 2
−1
−2



u3 = b3 −
⟨b3, u1⟩
⟨u1, u1⟩

u1 −
⟨b3, u2⟩
⟨u2, u2⟩

u2 =

 0
0
1

−

〈 0
0
1

 ,

 1
2
0

〉
〈 1

2
0

 ,

 1
2
0

〉
 1

2
0

−

〈 0
0
1

 ,

 6
−3
−6

〉
〈 6

−3
−6

 ,

 6
−3
−6

〉
 6

−3
−6



=

 0
0
1

− 0

5

 1
2
0

− −6

81

 6
−3
−6

 =
1

9

 4
−2
5


=⇒ w3 =

u3

∥u3∥
=

1

3
√
5

 4
−2
5


3.3. The characteristic polynomial of A is

pA(λ) = −(λ− 1)2(λ− 7),

so that we obtain the eigenvalues λ1 = 1 and λ2 = 7, where λ1 is a repeated eigenvalue. Following
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our standard procedure for computing eigenvectors, we obtain the eigenspaces

E1 = span

{ −1
1
0

 ,

 −1
0
1


︸ ︷︷ ︸

=:x1

}
, E7 = span

{ 1
1
1


︸ ︷︷ ︸
=:x3

}
.

We see that x3 is orthogonal to both x1 and x2. However, since x⊤
1 x2 = 1 ̸= 0, they are not

orthogonal. The spectral theorem states that there exists an orthogonal basis, but the one we
have is not orthogonal. However, we can construct one.

To construct such a basis, we exploit the fact that x1,x2 are eigenvectors associated with the same
eigenvalue λ. Therefore, for any α, β ∈ R it holds that

A (αx1 + βx2) = Ax1α+Ax2β = λ (αx1 + βx2) ,

i.e., any linear combination of x1 and x2 is also an eigenvector of A associated with λ. The Gram-
Schmidt algorithm is a method for iteratively constructing an orthogonal/orthonormal basis from
a set of basis vectors using such linear combinations. Therefore, even if x1 and x2 are not orthogonal,
we can apply the Gram-Schmidt algorithm and find eigenvectors associated with λ1 = 1 that are
orthogonal to each other (and to x3 ). In our example, without normalization, we will obtain

x′
1 =

 −1
1
0

 , x′
2 =

1

2

 −1
−1
2


which are orthogonal to each other, orthogonal to x3, and eigenvectors of A associated with λ1 = 1.

Lastly, we can normalize , x′
1, x

′
2 and x3 to obtain an orthogonal and thereby easily invertible matrix

with eigenvectors as columns:

P :=

 − 1√
2

− 1√
6

1√
3

1√
2

− 1√
6

1√
3

0 2√
6

1√
3


and we get the following eigendecomposition:

A = Pdiag(1, 1, 7)P⊤ =

 − 1√
2

− 1√
6

1√
3

1√
2

− 1√
6

1√
3

0 2√
6

1√
3


 1 0 0

0 1 0
0 0 7


 − 1√

2
1 1√

2
0

− 1√
6

− 1√
6

2√
6

1√
3

1√
3

1√
3

 .

4. Question: Projection onto general Subspaces (elementary)

4.1. How does the formula for orthogonal projection onto subspaces from definition 5.7 simplify if the given
basis is not only orthogonal but orthonormal?

4.2. In R3, let

W = span


1
1
2

 ,

 1
1
−1


be the subspace spanned by the vectors (1, 1, 2)⊤ and (1, 1,−1)⊤. What point of W is closest to the
vector (4, 5,−2)⊤ ?
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4.3. In R3, find the orthogonal projection of (2, 2, 5)⊤ on the subspace

W = span


2
1
1

 ,

0
2
1

 .

4.4. Let {w1,w2, . . . ,wm} be an orthonormal basis of the subspace W ⊂ V . Prove that the vectors
(v − prW (v)) and wk ar orthogonal ∀v ∈ V , k = 1, . . . ,m; and hence v−prW (v) is orthogonal to every
vector in W .

Solution:

4.1. All vectors wj in an orthonormal basis have length one, i.e. ⟨wj ,wj⟩ = 1, so the formula simplifies
to

projW (v) = πW (v) =

m∑
j=1

⟨v,wj⟩wj .

4.2. Clearly, (1, 1, 2)⊤ and (1, 1,−1)⊤ are already orthogonal, so we can immediately use the formula
from from definition 5.7.
Let

w1 = (1, 1, 2)

w2 = (1, 1,−1)

W = Span (w1, w2)

v = (4, 5,−2)

Since w1 ⊥ w2, the projection of v onto W is as follows.

projw1
v =

w1 · v
w1 · w1

w1 =
5

6
(1, 1, 2) =

(
5

6
,
5

6
,
10

6

)
projw2

v =
w2 · v
w2 · w2

w2 =
11

3
(1, 1,−1) =

(
11

3
,
11

3
,−11

3

)
projW v = projw1

v + projw2
v

=

(
27

6
,
27

6
,−6

3

)
=

(
9

2
,
9

2
,−2

)
Hence

(
9
2 ,

9
2 ,−2

)⊤
is the closest vector.

4.3. Let
v1 = (2, 1, 1),

v2 = (0, 2, 1),

v = (2, 2, 5),

W = Span (v1, v2) .

Since v1 and v2 are not orthogonal to each other, we have to find an orthogonal basis for W . The
GramSchmidt orthogonalization gives us the following:

∥v1∥ =
√
6

u1 =
1√
6
(2, 1, 1)

v2 − projv1 v2 = (0, 2, 1)−
(
1,

1

2
,
1

2

)
=

(
−1,

3

2
,
1

2

)
∥∥∥∥(−1,

3

2
,
1

2

)∥∥∥∥ =

√
1 +

9

4
+

1

4
=

√
14

4
=

√
14

2

u2 =
2√
14

(
−1,

3

2
,
1

2

)
=

(
− 2√

14
,

3√
14

,
1√
14

)
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Hence u1, u2 constitutes an orthonormal basis for W . Now we find the projection of v onto W :

proju1
v = (u1 · v)u1

=
11

6
(2, 1, 1) =

(
11

3
,
11

6
,
11

6

)
proju2

v = (u2 · v)u2

= 1

(
−1,

3

2
,
1

2

)
=

(
−1,

3

2
,
1

2

)
,

projW v = proju1
v + proju2

v

=

(
11

3
− 1,

11

6
+

3

2
,
11

6
+

1

2

)
=

(
8

3
,
10

3
,
7

3

)

Therefore
(
8
3 ,

10
3 , 7

3

)⊤
is the closest vector.

4.4. This is a straightforward calculation:

⟨v − prW (v), uk⟩ = ⟨v, uk⟩ − ⟨prW (v), uk⟩

= ⟨v, uk⟩ −

〈
m∑
j=1

⟨v, uj⟩uj , uk

〉

= ⟨v, uk⟩ −
m∑
j=1

⟨v, uj⟩ ⟨uj , uk⟩

= ⟨v, uk⟩ − ⟨v, uk⟩ ⟨uk, uk⟩ = 0

The transition from line 3 to line 4 is justified by the orthogonality of the u′s; the last step requires
that the u’s be unit vectors.

The second assertion of the lemma follows from the fact that every element of W can be written as
a linear combination of the orthonormal basis vectors.

If you have any questions or feedback, please feel free to contact me via E-mail at
hannah.kuempel@stat.uni-muenchen.de!!

Also, thank you to the authors of the books Linear Algebra and Its Applications & Mathe-
matics for Machine Learning as well as I Seul Bee whose exercises this sheet was inspired
by.
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