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1. Question: Intuition for those unfamiliar (very elementary)

1.1. Write out the transpose of the following matrix:

A =


1 3 5 7 1
2 3 4 5 6
1 2 3 4 5
6 7 8 9 10


Solution:

We simply write the rows of A as the columns of A⊤ :

AT =


1 2 1 6
3 3 2 7
5 4 3 8
7 5 4 9
1 6 5 10


Notice that when A ∈ R4×5, A⊤ ∈ R5×4!

1.2. Write out two matrices that cannot be multiplied with each other.

Solution:

There are many possible answers here. We just need two matrices so that the number of columns of
the first matrix is not equal to the number of rows in the second. One example is

1 1
1 0
0 1
0 0

 and

 1 1 3
1 0 4
0 1 5

 .

1.3. Write 2× 2 matrices A and B such that AB ̸= BA. Verify your solution by computing the products.

Solution:

Almost any two matrices you write down will work. For instance, if

A =

[
0 1
1 0

]
B =

[
2 0
0 1

]
then

AB =

[
0 1
2 0

]
but

BA =

[
0 2
1 0

]
1.4. Write 2× 2 matrices A,B,C such that AB = AC but B ̸= C. Verify your solution by computing the

products.

Solution:

First, a helpful observation. Suppose A is invertible and AB = AC. Then multiplying both sides by
A−1 gives A−1(AB) = A−1(AC). Using distributivity and the fact that A−1A = I, this implies that
IB = IC and therefore B = C. So if we want to solve this problem, we need to pick some A that is
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not invertible. The simplest option is

A =

[
0 0
0 0

]
In which case, we can choose B and C to be any two matrices. For instance

B =

[
1 0
0 1

]
C =

[
1 2
3 4

]
Here’s another example.

A =

[
1 3
2 6

]
B =

[
1 2
3 4

]
C =

[
10 11
0 1

]
1.5. Find two matrices that are inverse to each other.

Solution:

The easiest answer would of course be, for any a1, . . . , an ∈ R \ {0}, n ∈ N>0, the following two
diagonal matrices

A = diag(a1, . . . , an) & B = diag

(
1

a1
, . . . ,

1

an

)
Another option would be the following two:

A =

 1 2 1
4 4 5
6 7 7

 & B =

 −7 −7 6
2 1 −1
4 5 −4

 .

1.6. Find (and sketch) a system of linear equations each, that

– has infinitely many solutions

– has exactly one solution

– has no solution.

(Of course, you shouldn’t use the examples from the booklet.)

Solution:

– The following is a system of linear equations with infinitely many solutions:

x+ y = 1
2x+ 2y = 2

– The following is a system of linear equations with exactly one solution:

x = 1

y = 2

– The following is a system of linear equations with no solution:

x+ y = 1
2x+ 2y = 3

The sketches are left to you, but the visual idea is of course the same as in the booklet.
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2. Question: Vector and Matrix Multiplication
(elementary, but good computational practice!)

2.1. Given the vectors a and b:

a =


1
0
5
7

 & b =


2
4
0
8


Compute the following:

(i) the four products aTb ; bTa ; aTba ; bTab
(Hint: This should only be three different values)

(ii) the two products abT and baT . Do you notice anything here?

Solution:

(i) First, we get

aTb =
(
1 0 5 7

)
2
4
0
8

 = 1 · 2 + 0 · 4 + 5 · 0 + 7 · 8 = 2 + 0 + 0 + 56 = 58 .

We could also compute bTa:

bTa =
(
2 4 0 8

)
1
0
5
7

 = 2 · 1 + 4 · 0 + 0 · 5 + 8 · 7 = 2 + 0 + 0 + 56 = 58

but, trivially, we will always get aTb = bTa for two vectors of the same dimension. Thus,

aTb = bTa = 58 .

Now, given that aTb and bTa are scalars, we immediately get

aTba = 58a =


58 · 1
58 · 0
58 · 5
58 · 7

 =


58 · 1
58
0
290
406


and

bTab = 58b =


58 · 2
58 · 4
58 · 0
58 · 8

 =


58 · 1
116
232
0

464

 .

(ii) To compute the outer product abT , we perform the following steps:

abT =


1
0
5
7

(
2 4 0 8

)
=


1 · 2 1 · 4 1 · 0 1 · 8
0 · 2 0 · 4 0 · 0 0 · 8
5 · 2 5 · 4 5 · 0 5 · 8
7 · 2 7 · 4 7 · 0 7 · 8

 =


2 4 0 8
0 0 0 0
10 20 0 40
14 28 0 56
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Similarly, to compute the outer product baT , we perform the following steps:

baT =


2
4
0
8

(
1 0 5 7

)
=


2 · 1 2 · 0 2 · 5 2 · 7
4 · 1 4 · 0 4 · 5 4 · 7
0 · 1 0 · 0 0 · 5 0 · 7
8 · 1 8 · 0 8 · 5 8 · 7

 =


2 0 10 14
4 0 20 28
0 0 0 0
8 0 40 56


Hopefully you noticed that these two matrices are the tranpose of each other! Of course that
makes sense, because

(ab⊤)⊤ = (b⊤)⊤a⊤ = ba⊤ .

2.2. Given the following matrix A and vector b:

A =

1 2 3
4 5 6
7 8 9

 & b =

 1
0
−1


compute the two products Ab and b⊤A.

Solution:

Ab =

1 2 3
4 5 6
7 8 9

 1
0
−1

 =

1 · 1 + 2 · 0 + 3 · (−1)
4 · 1 + 5 · 0 + 6 · (−1)
7 · 1 + 8 · 0 + 9 · (−1)

 =

1 + 0− 3
4 + 0− 6
7 + 0− 9

 =

−2
−2
−2


Furthermore,

bTA =
(
1 0 −1

)1 2 3
4 5 6
7 8 9


=

(
[1 · 1 + 0 · 4 + (−1) · 7] [1 · 2 + 0 · 5 + (−1) · 8] [1 · 3 + 0 · 6 + (−1) · 9]

)
=

(
−6 −6 −6

)
Note: If we write v =

−6
−6
−6

, then the above solution is equal to v⊤ ∈ R1×3.

2.3. Given the matrices

A =

(
1 0 3
0 5 0

)
& B =

0 2
4 0
0 6


compute the product AB.

Solution:

C = AB =

(
1 0 3
0 5 0

)0 2
4 0
0 6


Calculating the elements of C:

c11 = 1 · 0 + 0 · 4 + 3 · 0 = 0

c12 = 1 · 2 + 0 · 0 + 3 · 6 = 2 + 18 = 20

c21 = 0 · 0 + 5 · 4 + 0 · 0 = 20

c22 = 0 · 2 + 5 · 0 + 0 · 6 = 0
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Thus, the resulting matrix is:

AB =

(
0 20
20 0

)

3. Question: Verification of Matrix Properties (basic)

3.1. Verify the Associativity and Distributivity properties of real-valued matrix operations (i.e. show
that they are true). (elementary)

Solution:

Note: Hereafter, Mi∗ denotes the ith row of matrix M and M∗j its jth column.

To prove the left-hand distributive property, demonstrate the corresponding entries in the matrices
A(B+C) and AB+AC are equal. To this end, use the definition of matrix multiplication to write

[A(B+C)]ij = Ai∗(B+C)∗j =
∑
k

[A]ik[B+C]kj =
∑
k

[A]ik ([B]kj + [C]kj)

=
∑
k

([A]ik[B]kj + [A]ik[C]kj) =
∑
k

[A]ik[B]kj +
∑
k

[A]ik[C]kj

= Ai∗B∗j +Ai∗C∗j = [AB]ij + [AC]ij

= [AB+AC]ij

Since this is true for each i and j, it follows that A(B+C) = AB+AC. The proof of the right-hand
distributive property works analogously.
To prove the associative law, suppose that B is p× q and C is q× n, and recall that the jth column
of BC is a linear combination of the columns in B. That is,

[BC]∗j = B∗1c1j +B∗2c2j + · · ·+B∗qcqj =

q∑
k=1

B∗kckj

Use this along with the left-hand distributive property to write

[A(BC)]ij = Ai∗[BC]∗j = Ai∗

q∑
k=1

B∗kckj =

q∑
k=1

Ai∗B∗kckj

=

q∑
k=1

[AB]ikckj = [AB]i∗C∗j = [(AB)C]ij .

3.2. Show that Associativity and Distributivity also hold for multiplying a scalar with real-valued matrixes,
i.e. that the following statements are true ∀λ, ψ ∈ R:

(i) Associativity :
(λψ)C = λ(ψC), C ∈ Rm×n

and λ(BC) = (λB)C = B(λC) = (BC)λ, B ∈ Rm×n,C ∈ Rn×k.

(ii) Distributivity :
(λ+ ψ)C = λC + ψC, C ∈ Rm×n

and λ(B +C) = λB + λC, B,C ∈ Rm×n

(elementary)
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Solution:

(i) The first statement follows directly from how scalar multiplication is defined for matrices:

∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} : [(λψ)C]ij = (λψ)cij = λ(ψcij) = [λ(ψC)]ij

Furthermore, ∀i ∈ {1, . . . ,m}, j = {1, . . . , k} :

[λ(BC)]ij = λ

n∑
l=1

bilclj =

n∑
l=1

λbilclj =

n∑
l=1

(λbil)clj = [(λB)C]ij

=

n∑
l=1

bilλclj =

n∑
l=1

bil(λclj) = [B(λC)]ij

=

n∑
l=1

bilcljλ =

n∑
l=1

(bilclj)λ = [(BC)λ]ij

(ii) The first statement again follows directly from how scalar multiplication is defined for matrices:

∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} : [(λ+ ψ)C]ij = (λ+ ψ)cij = λcij + ψcij = [λC + ψC]ij

Furthermore,

∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} : [λ(B +C)]ij = λ(bij + cij) = λbij + λcij = [λB + λC]ij

3.3. Prove that if a square matrix A is invertible, its inverse A−1 is unique.
Hint: Generally, one can prove uniqueness by considering two elements that satisfy the given property
(here, being the inverse of A) and show that the two elements are equal to each other.
(slightly less elementary)

Solution:

Suppose B and C are two inverses of A. We need to prove B = C. We have

AB = BA = I and AC = CA = I.

Therefore,
B = BI = B(AC) = (BA)C = IC = C.

So, the proof is complete.

3.4. Prove that the following holds for two non-zero n × n, n ∈ N>0 matrices A, B and invertible n × n
matrix C

AC = BC =⇒ A = B and CA = CB =⇒ A = B .

(less elementary)

Solution:

Suppose AC = BC. Multiply this equation by C−1 from the right side (we can do this because it is
given that C has an inverse), we get

(AC)C−1 = (BC)C−1. So A
(
CC−1

)
= B

(
CC−1

)
So AI = BI.

So A = B. Similarly, we prove the other one. The proof is complete.
Note: This is also called the Cancellation Property, which only applies to invertible matrices, see
also question 1.3.
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4. Question: Systems of Linear Equations (basic)

4.1. Find all solutions of the following system of linear equations. (elementary)

4x2 + 8x3 = 12

x1 − x2 + 3x3 = −1

3x1 − 2x2 + 5x3 = 6

Solution:

First, let’s write the corresponding augmented matrix. 0 4 8 12
1 −1 3 −1
3 −2 5 6


Now we can use Guassian elimination 0 4 8 12

1 −1 3 −1
3 −2 5 6

 Switch R1 and R2−−−−−−−−−−−−→

 1 −1 3 −1
0 4 8 12
3 −2 5 6

 R3−3R1→R3−−−−−−−−→

 1 −1 3 −1
0 4 8 12
0 1 −4 9


1
4R2→R2−−−−−−→

 1 −1 3 −1
0 1 2 3
0 1 −4 9

 R3−R2→R3−−−−−−−−→

 1 −1 3 −1
0 1 2 3
0 0 −6 6


− 1

6R3→R3−−−−−−−→

 1 −1 3 −1
0 1 2 3
0 0 1 −1


Now we use back-substitution to find the solution. The system of equations corresponding to the
last augmented matrix above is:

x1 − x2 + 3x3 = −1

x2 + 2x3 = 3

x3 = −1

So we know x3 = −1. Plugging this into the second equation, we see that x2 = 3− 2(−1) = 5.
Plugging both of these into the first equation, we get x1 = −1 + x2 − 3x3 = −1 + 5− 3(−1) = 7.

So the final answer is x1 = 7, x2 = 5, x3 = −1.

4.2. Consider the following system of linear equations:

−2x1 + 4x2 − 2x3 − x4 + 4x5 = −3
4x1 − 8x2 + 3x3 − 3x4 + x5 = 2

x1 − 2x2 + x3 − x4 + x5 = 0
x1 − 2x2 − 3x4 + 4x5 = a

.

For which a ∈ R can it be solved? Give one particular solution to this linear system. (slightly less
elementary)

Solution:

We start with the augmented matrix (in the form [A | b] )
−2 4 −2 −1 4 −3
4 −8 3 −3 1 2
1 −2 1 −1 1 0
1 −2 0 −3 4 a
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Math Tutorial, Department of Statistics, LMU

Linear Equations & Matrix Algebra Problem Set
October 22nd, 2024

Swapping Rows 1 and 3 leads to 
1 −2 1 −1 1 0
4 −8 3 −3 1 2

−2 4 −2 −1 4 −3
1 −2 0 −3 4 a


R2−4R1&R3+2R1&R4−R1−→


1 −2 1 −1 1 0
0 0 −1 1 −3 2
0 0 0 −3 6 −3
0 0 −1 −2 3 a


R4−R2−R3−→


1 −2 1 −1 1 0
0 0 −1 1 −3 2
0 0 0 −3 6 −3
0 0 0 0 0 a+ 1


R2·(−1)&R3·(− 1

3 )−→


1 −2 1 −1 1 0
0 0 1 −1 3 −2
0 0 0 1 −2 1
0 0 0 0 0 a+ 1


Now we have reached reduced row echelon form. Reverting this compact notation back into the
explicit notation with the variables we seek, we obtain

x1 − 2x2 + x3 − x4 + x5 = 0
x3 − x4 + 3x5 = −2

x4 − 2x5 = 1
0 = a+ 1

Clearly, this is only solvable for a = −1.

Furthermore, one particular solution is given by
x1
x2
x3
x4
x5

 =


2
0
−1
1
0

 .

4.3. Let sp ∈ Rn be a (particular) solution to a system of linear equations defined by Ax = b, with
A ∈ Rn×n, b ∈ Rn. Furthermore, consider the set

S = {s ∈ Rn | s is a solution to the linear system Ax = 0n} .

Prove that ∀s ∈ S, sp + s is a solution to Ax = b.
What are the possible sizes of the sets of all possible solutions for any given linear system? (slightly
more challenging)

Solution:

We have, ∀s ∈ S:
A(sp + s) = Asp +As = b+ 0 = b ,

which proves the statement.
Generally, a system of linear equations has either no solution (size 0), or exactly one solution (size
1), or infinitely many solutions (size ∞).
This immediately becomes apparent by considering Illustration 2.1 in the booklet.
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5. Question: Inverse of a matrix (slightly more challenging)

5.1. To compute the inverse A−1 of A ∈ Rn×n, we need to find a matrix A−1 that satisfies AA−1 = In.
We can do this by transforming [A | In] to

[
In | A−1

]
, specifically by applying Gaussian elimination

until the left side is the identity matrix, in which case the right side give the inverse.

Apply this principle to calculate the inverse of the following matrix:

A =


1 0 2 0
1 1 0 0
1 2 0 1
1 1 1 1

 .

Solution:

We write down the augmented matrix
1 0 2 0 1 0 0 0
1 1 0 0 0 1 0 0
1 2 0 1 0 0 1 0
1 1 1 1 0 0 0 1


and use Gaussian elimination to bring it into reduced row-echelon form

1 0 0 0 −1 2 −2 2
0 1 0 0 1 −1 2 −2
0 0 1 0 1 −1 1 −1
0 0 0 1 −1 0 −1 2

 ,
such that the desired inverse is given as its right-hand side:

A−1 =


−1 2 −2 2
1 −1 2 −2
1 −1 1 −1
−1 0 −1 2


You can verify this is indeed the inverse by performing the multiplication AA−1 and observing that
we recover I4.

5.2. Let A =

[
a b
c d

]
be a non-zero 2× 2 matrix. Show that

(1.) If ad− bc = 0, then A has no inverse and

(2.) If ad− bc ̸= 0, then

A−1 =
1

ad− bc

[
d −b

−c a

]
.

Solution:

Write

B =

[
d −b

−c a

]
First,

AB =

[
a b
c d

] [
d −b

−c a

]
=

[
ad− bc 0

0 ad− bc

]
= (ad− bc)I2.

1. (Case 1:) Assume ad− bc = 0. Then, we have AB = O. So, A cannot have an inverse (otherwise
we will get B = A−1(AB) = O, which is not the case).
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2. (Case 2:) Assume ad− bc ̸= 0. We need to prove A
(

1
ad−bcB

)
= I2 =

(
1

ad−bcB
)
A. Multiply the

above equation by 1
ad−bc , we get

A

(
1

ad− bc
B

)
= I2

Similarly,
(

1
ad−bcB

)
A = I2. So, the proof is complete.

6. Question: Freaky Fun

In math, computing, etc., the modulo operation gives us the remainder when one integer is divided by
another integer. Specifically, for a, n ∈ Z, we have

a mod n := a− n
⌊a
n

⌋
.

Now, consider the set F7 = {1, 2, 3, 4, 5, 6} with the following two operations:

+ :F7 × F7 → F7, (x, y) 7−→ x+ y mod 7

· :F7 × F7 → F7, (x, y) 7−→ xy mod 7

(In case this reminds you of quotient spaces you’re not wrong, but we won’t even talk about vector spaces
until next week.)
Assuming that addition and multiplication of matrices with entries in F7 is defined analogously to the
real-valued case, calculate A+B ; AB ; and BA for matrices

A =

 0 2 4
1 5 6
0 1 0

 & B =

 1 1 0
5 3 1
0 4 6

 .

Solution:
•

A+B =

0 + 1 2 + 1 4 + 0
1 + 5 5 + 3 6 + 1
0 + 0 1 + 4 0 + 6

 applying mod 7 directly
=

1 3 4
6 1 0
0 5 6


• Using regular real-valued multiplication and addition, we get

AB =

0 2 4
1 5 6
0 1 0

1 1 0
5 3 1
0 4 6

 =

(0 · 1 + 2 · 5 + 4 · 0) (0 · 1 + 2 · 3 + 4 · 4) (0 · 0 + 2 · 1 + 4 · 6)
(1 · 1 + 5 · 5 + 6 · 0) (1 · 1 + 5 · 3 + 6 · 4) (1 · 0 + 5 · 1 + 6 · 6)
(0 · 1 + 1 · 5 + 0 · 0) (0 · 1 + 1 · 3 + 0 · 4) (0 · 0 + 1 · 1 + 0 · 6)


Calculating the entries modulo 7, we get:

AB =

3 1 5
5 5 6
5 3 1


• Using regular real-valued multiplication and addition, we get

BA =

1 1 0
5 3 1
0 4 6

0 2 4
1 5 6
0 1 0

 =

(1 · 0 + 1 · 1 + 0 · 0) (1 · 2 + 1 · 5 + 0 · 1) (1 · 4 + 1 · 6 + 0 · 0)
(5 · 0 + 3 · 1 + 1 · 0) (5 · 2 + 3 · 5 + 1 · 1) (5 · 4 + 3 · 6 + 1 · 0)
(0 · 0 + 4 · 1 + 6 · 0) (0 · 2 + 4 · 5 + 6 · 1) (0 · 4 + 4 · 6 + 6 · 0)
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Math Tutorial, Department of Statistics, LMU

Linear Equations & Matrix Algebra Problem Set
October 22nd, 2024

Calculating the entries modulo 7, we get:

BA =

1 0 3
3 5 3
4 5 3



If you have any questions or feedback, please feel free to contact me via E-mail at
hannah.kuempel@stat.uni-muenchen.de!!

Also, thank you to the authors of the book Mathematics for Machine Learning as well as
Satya Mandal, Patrick Lutz, and Rick Klima, whose exercises this sheet was inspired by.
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