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1. Question: Basic Inequalities (very elementary)

Let X be an exponential random variable with parameter λ = 12, i.e. with density

fX(x) =

{
12e−12x, x ≥ 0,

0, x < 0.

1.1. Use Markov’s inequality to find an upper bound for P (X > 6).

1.2. Use Chebyshev’s inequality to find an upper bound for P (X > 6).

1.3. Explicitly compute the probability above and compare with the upper bounds you derived.

Solution:

1.1.

P (X > 6) ≤ E[X]

6
=

1

72
.

1.2. From Chebyshev’s inequality, we have

P (|X − E[X]| > t) ≤ Var(X)

t2
.

Then

P (X > 6) ≤ P

(∣∣∣∣X − 1

12

∣∣∣∣ > 6− 1

12

)
≤ Var(X)

(71/12)2
=

1

712
.

1.3.

P (X > 6) =

∫ ∞

6

12e−12xdx = 1− e−12x
∣∣∞
6

= e−72 ≈ 5.3801862e− 32.

We notice that the exact probability is much smaller than the upper bounds we derived in 1.1 and
1.2, but that is not completely fine! The nature of upper bounds is to find expressions that will
always be larger that what they are bounding, even in “extreme” cases.

2. Question: Transformations of Several Random Variables
(elementary)

2.1. Let X and Y be independent random variables with cumulative distribution functions FX and FY ,
respectively. Show that the cumulative distribution function of X + Y is

FX+Y (t) =

∫
FY (t− x)dPX(x). (⋆)

2.2. The concept of 2.1 is also referred to as convolution. Specifically write out the pmf and pdf of X + Y
when X and Y are discrete and continuous RVs, respectively.
Hint: You may use that in (⋆), integration and differentiation are interchangeable by the dominated
convergence theorem and mean value theorem.

2.3. Let X be a uniform distribution on [0, 1], i.e. fX(x) = 1
1−01x∈[0,1], and Y be a uniform distribution

on [1, 2], i.e. fY (x) =
1

2−11x∈[1,2]. Find fZ for Z := X + Y .

2.4. Determine the cdf of the random variable Z := min{X,Y } for independent random variables X and
Y . What does the pdf look like if X and Y are continuous?
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Solution:

2.1. Note that

FX+Y (t) =

∫
x+y≤t

dPX(x)dPY (y)

=

∫ (∫
y≤t−x

dPY (y)

)
dPX(x)

=

∫
FY (t− x)dPX(x),

where the second equality follows from Fubini’s theorem.

2.2. For continuous X and Y :

fX+Y (t) =
∂

∂t
FX+Y (t)

=
∂

∂t

∫
FY (t− x)dPX(x)

Hint
=

∫
x∈ΩX

∂

∂t

(
fX(x)FY (t− x)

)
dx

(∗)
=

∫
x∈ΩX

fX(x)fY (t− x)dx

Where (∗) follows from the chain rule:

∂

∂t
FY (t− x) = fY (t− x) · ∂

∂t
(t− x) = fY (t− x) · 1 = fY (t− x).

For discrete X and Y , (⋆) of course still holds, but since the pmf is not defined as the derivative of
the cdf, getting from the formula for FX+Y (t) to the formula for pX+Y (t) is not straightforward.
So, we take the direct approach:

pX+Y (t) =
∑

x∈ΩX

P(X = x, Y = t− x)
Independence

=
∑

x∈ΩX

P(X = x)P(Y = t− x)

=
∑

x∈ΩX

pX(x)pY (t− x).

Note that this corresponds nicely to the following result of (⋆) in the discrete case:

FX+Y (t) =
∑

x∈ΩX

pX(x)FY (t− x).

2.3. Using the formula from 2.1., or rather 2.2,

fZ(t) =

∫ 1

0

fX(x)fY (t− x)dx

=

∫ 1

0

fY (t− x)dx =

∫ 1

0

1t−x∈[1,2]dx =

∫ 1

0

1x∈[t−2,t−1]dx

The last integral follows from the following: t − x ∈ [1, 2] when 2 ≥ t − x ≥ 1, which implies
t− 1 ≥ x ≥ t− 2. When t ∈ [1, 2], x can only be in [t− 2, t− 1] ∩ [0, 1] if x ∈ [0, t− 1].

Therefore, we get

fZ(t) =

{
t− 1 t ∈ [1, 2]

3− t t ∈ [2, 3]
.

2.4.
FZ(z) = P(Z ≤ z)

= 1− P(Z > z)

= 1− P(min{X,Y } > z)

= 1− P(X > z, Y > z)

because of independence = 1− (1− FX(z)) (1− FY (z))

= FX(z) + FY (z)− FX(z)FY (z).
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If fX , fY are the densities of continuous X, Y with cdfs FX(z), FY (z), then taking the derivative
yields:

fX(z) + fY (z)− fX(z)FY (z)− FX(z)fY (z).

3. Question: Convergence of Random Variables (elementary)

3.1. Consider a sequence of random variables ( Xn : n ∈ N ) such that Xn
Lp

−−→ X, then Xn
P−→ X.

3.2. Let X1, . . . , Xn be IID with finite mean µ = E (X1) and finite variance σ2 = V (X1). Let X̄n be the
sample mean and let S2

n be the sample variance.

(i) Show that E[X̄] = µ and E
(
S2
n

)
= σ2. (You may use that E

(
X̄2

)
= σ2

n + µ2.)

(ii) Show that S2
n

P−→ σ2. Hint: Show that S2
n = cnn

−1
∑n

i=1 X
2
i − dnX̄

2
n where cn → 1 and dn → 1.

Apply the law of large numbers to n−1
∑n

i=1 X
2
i and to X̄n. Then use part (e) of Theorem 11.1.

3.3. Let X1, X2, . . . be a sequence of random variables such that

P
(
Xn =

1

n

)
= 1− 1

n2
and P (Xn = n) =

1

n2

Does Xn converge in probability? Does Xn converge in L2?

3.4. Construct an example where Xn ⇝ X and Yn ⇝ Y but Xn + Yn does not converge in distribution to
X + Y .

Solution:

3.1. Let ϵ > 0, then from the Markov’s inequality applied to random variable |Xn −X|p, we have

P {|Xn −X| > ϵ} ⩽ E |Xn −X|p

ϵ
−→ 0.

3.2. (i) First,

E[X̄] = E
[
1

n

∑
Xi

]
=

1

n

∑
E [Xi] =

1

n
nµ = µ

Furthermore,

E
(
s2n

)
=

1

n− 1
E

∑
X2

i +
∑

X̄2 − 2
∑

XiX̄︸ ︷︷ ︸
nX̄2

 .

=
n

n− 1

(
E
(
X2

i

)
− E

(
X̄2

))
Hint and E(X2

i )=σ2+µ2

⇒ E
(
S2
n

)
=

n

n− 1

(
σ2 + µ2 − σ2

n
− µ2

)
= σ2.

(ii)

S2
n =

1

n− 1

∑
(xi − x̄)

2
=

n

n− 1︸ ︷︷ ︸
cn

1

n

∑
x2
i −

n

n− 1︸ ︷︷ ︸
dn

x̄2
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With limn→∞ cn = limn→∞ dn = 1 and the LLN, we get:

X̄n
P−→ µ ⇒ X̄2

n
P−→ µ2

⇒ dnX̄
2
n

P−→ µ2

Ȳn =
1

n

∑
x2
i

P−→ E
(
x2
i

)
⇒ Yn

P−→ σ2 + µ2

⇒ cnYn
P−→ σ2 + µ2

and so
s2n = cnYn − dnX̄

2
n

⇒ s2n
P−→ σ2 + µ2 − µ2

⇒ s2n
P−→ σ2.

3.3. • Xn does converge in probability, specifically Xn
P−→ 0, because

P(|Xn| > ε)
as 1

n becomes < ε for n → ∞
= P(Xn = n) =

1

n2
−→ 0.

• Given that convergence in Lp implies convergence in probability, we only need to check whether

Xn
P−→ 0. Since,

E
(
X2

n

)
= P(X =

1

n
)
1

n2
+ P(X = n)n2

=
1

n2

(
1− 1

n2

)
+ n2 1

n2
→ 1,

however, this is not the case and, therefore, Xn does not converge in L2.

3.4. An example would be any X1, X1, . . . distributed i.i.d. according to a symmetric distribution D
(such as standard normal N (0, 1)) and Yn defined as

Yn := −Xn.

Then, both Xn ⇝ Z ∼ D and Yn ⇝ Z ∼ D, but Xn + Yn = 0 ̸= 2Z.

4. Question: Miscellaneous Probability Theory
(slighlty more advanced)

4.1. Let X be a random variable with E[X]2 < ∞ and let Y = |X|. Suppose that X has a Lebesgue density
symmetric about 0 . Show that X and Y are uncorrelated (i.e. Cov(X,Y ) = E[XY ]− E[X]EY = 0),
but they are not independent.

4.2. Show that a random variable X is independent of itself if and only if X is constant a.s. Can X and
f(X) be independent, where f is a Borel function?

4.3. LetX be a random variable having a cumulative distribution function F with corresponding probability
measure P. Show that if E[X] exists, then

E[X] =

∫ ∞

0

[1− F (x)]dx−
∫ 0

−∞
F (x)dx.
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Solution:

4.1. Let f be the Lebesgue density of X. Then f(x) = f(−x). Since X and XY = X|X| are odd
functions of X,E[X] = 0 and E[X|X|] = 0. Hence,

Cov(X,Y ) = E[XY ]− E[X]E[Y ] = E(X|X|)− E[X]E[|X|] = 0

Let t be a positive constant such that p = P (0 < X < t) > 0. Then

P (0 < X < t, Y < t) = P (0 < X < t,−t < X < t)

= P (0 < X < t)

= p

and
P (0 < X < t)P (Y < t) = P (0 < X < t)P (−t < X < t)

= 2P (0 < X < t)P (0 < X < t)

= 2p2

i.e., P (0 < X < t, Y < t) ̸= P (0 < X < t)P (Y < t). Hence X and Y are not independent.

4.2. • Suppose that X = c a.s. for a constant c ∈ R. For any A ∈ B and B ∈ B,

P (X ∈ A,X ∈ B) = IA(c)IB(c) = P (X ∈ A)P (X ∈ B)

Hence X and X are independent. Suppose now that X is independent of itself. Then, for any
t ∈ R,

P (X ≤ t) = P (X ≤ t,X ≤ t) = [P (X ≤ t)]2

This means that P (X ≤ t) can only be 0 or 1 . Since limt→∞ P (X ≤ t) = 1 and limt→−∞ P (X ≤
t) = 0, there must be a c ∈ R such that P (X ≤ c) = 1 and P (X < c) = 0. This shows that
X = c a.s.

• Note that if X and f(X) are independent, then so are f(X) and f(X). This is the case because,
for any A,B ∈ B

X, f(X) independent =⇒ P(X ∈ A, f(X) ∈ B) = P(X ∈ A)P(f(X) ∈ B)

Now, define the set A := f−1(C) := {x : f(x) ∈ C} for an arbitrary set C ∈ B. Then

P(f(X) ∈ C, f(X) ∈ B) = P(X ∈ A, f(X) ∈ B)

= P(X ∈ A)P(f(X) ∈ B) = P(f(X) ∈ C)P(f(X) ∈ B).

From the previous result, this occurs if and only if f(X) is constant a.s.

4.3. By Fubini’s theorem, ∫ ∞

0

[1− F (x)]dx =

∫ ∞

0

∫
(x,∞)

dP(y)dx

=

∫ ∞

0

∫
(0,y)

dxdP(y)

=

∫ ∞

0

ydP(y)

Similarly, ∫ 0

−∞
F (x)dx =

∫ 0

−∞

∫
(−∞,x]

dP(y)dx = −
∫ 0

−∞
ydP(y)

If E[X] exists, then at least one of
∫∞
0

ydP(y) and
∫ 0

−∞ ydP(y) is finite and

E[X] =

∫ ∞

−∞
ydP(y) =

∫ ∞

0

[1− F (x)]dx−
∫ 0

−∞
F (x)dx.
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If you have any questions or feedback, please feel free to contact me via E-mail at
hannah.kuempel@stat.uni-muenchen.de!!

Also, thank you to Jun Shao, the authors of the book All of Statistics: A Concise Course
in Statistical Inference, andMark Hermanwhose exercises this sheet was inspired by.
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