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1. Question: Integration w.r.t. different measures
(elementary)

1.1. Consider the function

f : R −→ R, x 7→


1, if −1 < x ≤ 0

2, if 0 < x ≤ 1

3, if 1 < x ≤ 2,

0, otherwise.

Calculate the integral of this function w.r.t.

(i) the Lebesgue measure and

(ii) the Dirac measure, defined on (R,B(R)) as δy(x) = 1x=y for a fixed y ∈ R.

1.2. Let µ be the counting measure on N, and define the sequence {fn}n∈N by

fn(x) =

{
1 if x = n

0 otherwise.

Compute

(i) limn→∞
∫
fndµ and

(ii)
∫
limn→∞ fndµ.

Solution:

1.1. (i) Since f is a simple and nonnegative function, we can simply write the integral as∫
f(x)λ(x) = 1 · λ ((−1, 0]) + 2 · λ ((0, 1]) + 3 · λ ((1, 2]) = 1 + 2 + 3 = 6.

(ii) For any simply function g(x) =
∑

i ci1Ai(x), the integral w.r.t. the Dirac measure is given by∫
gdδy =

∑
i

ciδy (Ai) =
∑
i

ci1Ai(y) = g(y).

Therefore,
∫
fdδy = f(y).

1.2. (i) limn→∞
∫
fndµ = 1

(ii)
∫
limn→∞ fndµ = 0

This shows that the integral and limit are not always interchangeable.

2. Question: Measures and Probability Space (elementary)

2.1. Take the measurable space Ω = {1, 2}, F = 2Ω. Which of the following is a measure? Which is a
probability measure?

a. µ(∅) = 0, µ({1}) = 5, µ({2}) = 6, µ({1, 2}) = 11

b. µ(∅) = 0, µ({1}) = 0, µ({2}) = 0, µ({1, 2}) = 1

c. µ(∅) = 0, µ({1}) = 0, µ({2}) = 0, µ({1, 2}) = 0

d. µ(∅) = 0, µ({1}) = 0, µ({2}) = 1, µ({1, 2}) = 1

e. µ(∅) = 0, µ({1}) = 0, µ({2}) = ∞, µ({1, 2}) = ∞
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2.2. Define a probability space that could be used to model the outcome of throwing two fair 6-sided dice.

2.3. Let (X,µ) be a measure space and E a measurable subset of X. Show that for every A ⊂ X the
following holds:

µ(E ∩A) + µ(E ∪A) = µ(E) + µ(A).

2.4. Let A and B be events with probabilities P (A) = 2
3 and P (B) = 1

2

(i) Show that 1
6 ≤ P (A ∩B) ≤ 1

2 , and give examples to show that both extremes are possible.

(ii) Find corresponding bounds for P (A ∪B).

Solution:

2.1. a. Measure. Not probability measure since µ(Ω) > 1.

b. Neither due to countable additivity.

c. Measure. Not probability measure since µ(Ω) = 0.

d. Probability measure.

e. Measure. Not probability measure since µ(Ω) > 1.

2.2. • Ω = {{i, j}, i = 1, . . . , 6, j = 1, . . . , 6}
• F = 2Ω

• ∀ω ∈ Ω, P (ω) = 1
6 × 1

6 = 1
36

2.3. Due to the measurability of E, we know

µ(E ∪A) = µ((E ∪A) ∩ E) + µ ((E ∪A) ∩ Ec) = µ(E) + µ (A ∩ Ec)

and similarily
µ(A) = µ(A ∩ E) + µ (A ∩ Ec)

Comparing the expressions for µ (A ∩ Ec), we obtain

µ(E ∩A) + µ(E ∪A) = µ(E) + µ(A).

2.4. (i) From the properties of probability we have

P (A ∪B) = P (A) + P (B)− P (A ∩B) ≤ 1

From this follows
P (A ∩B) ≥ P (A) + P (B)− 1

=
2

3
+

1

2
− 1

=
1

6
,

which is the lower bound for the intersection. Conversely, we have

P (A ∪B) = P (A) + P (B)− P (A ∩B) ≥ P (A)

From this follows
P (A ∩B) ≤ P (B)

=
1

2
,

which is the upper bound for the intersection. For an example take a fair die. To achieve the
lower bound let A = {3, 4, 5, 6} and B = {1, 2, 3}, then their intersection is A ∩ B = {3}. To
achieve the upper bound take A = {1, 2, 3, 4} and $B = {1, 2, 3}$.
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(ii) For the bounds of the union we will use the results from the first part. Again from the properties
of probability we have

P (A ∪B) = P (A) + P (B)− P (A ∩B)

≥ P (A) + P (B)− 1

2

=
2

3
.

Conversely
P (A ∪B) = P (A) + P (B)− P (A ∩B)

≤ P (A) + P (B)− 1

6
= 1.

Therefore 2
3 ≤ P (A ∪B) ≤ 1.

3. Question: Sigma Algebras (medium)

3.1. Let A be a fixed subset of a set X. Determine the σ-algebra of subsets of X generated by {A}.

3.2. Let Ω be a non-empty set. Suppose that F1 and F2 are σ-algebras on Ω. Prove that F1 ∩F2 is also a
σ-algebra on Ω.

3.3. Suppose that F1 and F2 are σ-algebras on Ω. Show by example that F1∪F2 may fail to be a σ-algebra.
Hint: You can consider two σ-algebras F1 and F2 on Ω := {1, 2, 3}.

3.4. Let X be an uncountable set. (An uncountable set X is one that is not countable, i.e. there is no
bijection between X and N, meaning X has more elements than the natural numbers.)
Consider

S = {E ⊂ X : E or Ec is at most countable }

and show that S is a σ-algebra and that S is generated by the one-point subsets of X.
Hint: It will help to apply the following identity: ∪∞

k=1A
c
k ⊂ (∩∞

k=1Ak)
c
.

Solution:

3.1. The σ-algebra generated by {A} necessarily contains the following elements:

∅, A,Ac, X

Due to the collection {∅, A,Ac, X} already being closed under taking complements and unions of
sets, this is the σ-algebra generated by {A}.

3.2. We check the requirements for a σ-algebra:

• Ω ∈ F1 ∩ F2 because Ω ∈ Fi for all i ∈ {1, 2};
• if A ∈ F1 ∩F2, then A ∈ Fi, and hence Ac ∈ Fi for all i ∈ {1, 2}. It follows that Ac ∈ F1 ∩F2;

• if An ∈ F1 ∩ F2, n ∈ N, then An ∈ Fi for all i ∈ {1, 2}. Hence, ∪n∈NAn ∈ Fi for all i ∈ {1, 2},
and thus ∪n∈NAn ∈ F1 ∩ F2.

3.3. Let Ω := {1, 2, 3}, and consider the σ-algebras

F1 := σ({{1}}) = {∅, {1, 2, 3}, {1}, {2, 3}} and F2 := σ({{2}}) = {∅, {1, 2, 3}, {2}, {1, 3}}

It is straightforward to verify that the union F1∪F2 contains both {1} and {2}, yet does not contain
{1} ∪ {2} = {1, 2}. Hence, F1 ∪ F2 is not a σ-algebra.
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3.4. Firstly, let us show that S is a σ-algebra. Clearly, ∅ and X belong to S. Moreover, it is easy to
see that S is closed under taking complements. Let therefore {Ak} ⊂ S. If all sets {Ak} are at
most countable, then so is ∪∞

k=1Ak, implying that the union again belongs to S. Otherwise, Am is
uncountable for some m, therefore Ac

m is at most countable. Due to the inclusion( ∞⋃
k=1

Ak

)c

⊂ Ac
m

the complement of ∪∞
k=1Ak is at most countable and therefore

∞⋃
k=1

Ak ∈ S

It remains to show that S is generated by the one-point subsets of X. By the definition of S, all
one-point subsets belong to S. In addition, for every A in S, either A or its complement can be
expressed as a countable union of one-point subsets. Consequently, every element in S can be obtain
from the one-point subsets using unions and complements.

4. Question: More Measure Theory (medium)

4.1. Show that the Lebesgue measure of rational numbers on [0, 1] is 0.

4.2. Take the measure space (Ω1 = (0, 1],B((0, 1]), λ) (we know that this is a probability space on (0, 1]).

(i) Define a map (function) from Ω1 to Ω2 = {1, 2, 3, 4, 5, 6} such that the measure space(
Ω2, 2

Ω2 , λ ◦ f−1
)

will be a discrete probability space with uniform probabilities

(P (ω) = 1
6 ,∀ω ∈ Ω2

)
.

(ii) Is the map that you defined in (i) the only such map?

(iii) How would you in the same fashion define a map that would result in a probability space that
can be interpreted as a coin toss with probability p of heads?

4.3. Let Ω1 = (0, 1), let F1 be the Borel sets, and let P1 be the Lebesgue measure. Let Ω2 = (0, 1) let F2

be the set of all subsets of (0, 1), and let P2 be the counting measure. In particular, for every infinite
(countable or uncountable) subset of (0, 1),P2(A) = ∞.

Define

f : R2 −→ R, (x, y) =

{
1, if x = y

0, otherwise.

Does Fubini’s theorem apply here?

Solution:

4.1. There are a countable number of rational numbers. Therefore, we can write

λ(Q) = λ (∪∞
i=1qi)

=
∑∞

i=1 λ (qi) (countable additivity)
=
∑∞

i=1 0 (Lebesgue measure of a singleton)
= 0.

4.2. (i) In other words, we have to assign disjunct intervals of the same size to each element of Ω2.
Therefore

f(x) = ⌈6x⌉

(ii) No, we could for example rearrange the order in which the intervals are mapped to integers.
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Additionally, we could have several disjoint intervals that mapped to the same integer, as long
as the Lebesgue measure of their union would be 1

6 and the function would remain injective.

(iii) We have Ω3 = {0, 1}, where zero represents heads and one represents tails. Then

f(x) = 01A(x)

where A = {y ∈ (0, 1] : y < p}.

4.3. Here, ∫
Ω1

∫
Ω2

f(x, y)dP2(y)dP1(x) =

∫
Ω1

1dP1(y) = 1

but ∫
Ω2

∫
Ω1

f(x, y)dP1(x)dP2(y) =

∫
Ω2

0dP2(y) = 0

In this case, the conditions of Fubini’s theorem fail to hold: the measure on (0, 1) is not σ-finite.

5. Question: Infinite Monkey Theorem
(Freaky Fun)

Prove the following statement: Consider an infinite string of letters a1a2 · · · an · · · produced from a finite
alphabet (of, say, 26 letters) by picking each letter independently at random, and uniformly from the alphabet
(so each letter gets picked with probability 1

26 ). Fix a string S of length m from the same alphabet (which
is the given ”text”). Let Ej be the event that the substring ajaj+1 · · · aj+m−1 is S. Then with probability 1,
infinitely many of the Ej’s occur.

Solution:

Consider the sequence of events (Emj+1)
∞
j=0. Observe that they are independent events: the event that

a1a2 · · · am is S is independent from the event that am+1am+2 · · · a2m is S, etc., since they belong to different
”blocks” of the infinite string. Moreover, for every j, P (Emj+1) =

(
1
26

)m
. Therefore

∑∞
j=0 P (Emj+1) =∑∞

j=0

(
1
26

)m
= ∞. So by Part (ii) of the Borel-Cantelli lemma, the probability that infinitely many of the

Emj+1 ’s occur is 1 .

If you have any questions or feedback, please feel free to contact me via E-mail at
hannah.kuempel@stat.uni-muenchen.de!!

Also, thank you to Prof. Francesca Da Lio, Prof. Dr. Beatrice Acciaio, and the authors of
this MATH 3160 - Probability lecture as well as the book Principles of Uncertainty – Ex-
ercises, Retrieved January 6, 2025, from https://fri-datascience.github.io/course_

pou/ whose exercises this sheet was inspired by.
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