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1. Question: Metrics on R
1.1. What would be the natural norm and metric to define on the real line? Use this metric to show that

the real line is a metric space.

Solution:

Clearly, the absolute value is a norm on R. Therefore, by Remark 1.1., the function

d : R× R −→ R≥0, (x, y) 7→ |x− y|

is a metric on R. Therefore, the real line (R, d) is a metric space.

1.2. Are the following functions metrics on R? Prove your answer.

(i) d : R× R −→ R, (x, y) 7→ (x− y)2

(ii) d : R× R −→ R, (x, y) 7→
√
|x− y|.

Solution:

(i) No, this is not a metric, since it does not satisfy the triangle inequality. We can prove this via
counterexample (or contradiction): Choose x = 3, y = 1 and z = 2, then

d(3, 1) = (3− 1)2 = 22 = 4

but
d(3, 2) + d(2, 1) = (3− 2)2 + (2− 1)2 = 2 < 4.

(ii) The first two properties of a metric are clearly fulfilled by d(x, y) =
√
|x− y|:

1. Consider x, y ∈ R with x = y. Then d(x, y) =
√
0 = 0.

Meanwhile, for x, y ∈ R with x ̸= y, it follows that q := |x− y| ∈ R>0

⇒ d(x, y) =
√
q > 0.

2. Symmetry also directly follows from the symmetry of the absolute value, i.e. the fact that
|x− y| = |y − x|.

To verify the triangle inequality for any x, y, z ∈ R, we write

[d(x, y)]2 = |x− y| ≤ |x− z|+ |z − y|

≤ |x− z|+ |z − y|+ 2
√
|x− z|

√
|z − y|

= (
√
|x− z|+

√
|z − y|)2

=
[
[d(x, z) + d(z, y)]2.

Taking square root on both sides yields the triangle inequality.

1.3. Let d be a metric on X. Determine all constants k ∈ R such that each of the following functions
d′ : R× R −→ R is a metric on X.

(i) d′(x, y) := kd(x, y)

(ii) d′(x, y) := d(x, y) + k.

Solution:

(i) Here, the answer is any k ∈ R>0. This is because, multiplication generally does not affect the
properties of a metric. But, if X has more than one point (as R does), then the zero function
cannot be a metric on X.

(ii) Here, k has to be equal to zero so that d′ still satisfies the first requirement of a metric, i.e.
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∀x, y ∈ S we have d(x, y) = 0 if and only if x = y. This is because, if k ̸= 0, it would follow
that

d′(x, y) = d(x, y) + k = 0 + k ̸= 0.

2. Question: Metrics on Rm

2.1. Sketch the unit-ball, i.e. the ε-Ball in R2 with ε = 1, for the following three metrics:

• Euclidean distance, i.e.

dEuclidean : Rm × Rm −→ R≥0, (x,y) 7→

√√√√ m∑
i=1

(xi − yi)2

• Manhattan distance, i.e.

dManhattan : Rm × Rm −→ R≥0, (x,y) 7→
m∑
i=1

|xi − yi|

• Chebyshev distance, i.e.

dChebyshev : Rm × Rm −→ R≥0, (x,y) 7→ max
{
|x1 − y1|, |x2 − y2|, . . . , |xm − ym|

}
.

Solution:
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2.2. Use the sketch from 2.1 to explain the intuition of each metric and give an example of when it might
be useful.

Solution:

• Euclidean Distance: This is the most common distance metric. It represents our intuitive
understanding of distance as the length of a straight line between two points.

• Manhattan Distance: As this metric sums up element-wise absolute distances, it may be
thought of as the length of a step-wise function in R2. As such, it the Manhattan distance is,
e.g., useful in grid-based environments, such as urban planning where movement is restricted
to grid-like street layouts. Of course there are many more applications, like L1 regularization.

• Chebyshev Distance: As this metric gives us the maximum element-wise distance, it is
helpful in scenarios where the maximum distance in any dimension is critical, such as in logistics
where the worst-case scenario must be minimized.

2.3. is the squared Euclidean distance d 2
Euclidean a metric? Prove your answer.

Solution:

No, it is not. Given 1.2(i), it is intuitive that dEuclidean would not satisfy the triangle inequality. To
prove this, we generalize the contradiction/counterexample of 1.2(i):

Consider an arbitrary x ∈ Rm\{0} and set y = 3x and z = 2x. Then

d(x, y)2 =

m∑
i=1

(xi − 3xi)
2
= 4

m∑
i=1

x2
i

and

d(x, z)2 + d(z, y)2 =

m∑
i=1

x2
i +

m∑
i=1

x2
i = 2

m∑
i=1

x2
i .

Since 4
∑m

i=1 x
2
i > 2

∑m
i=1 x

2
i , we have found a contradiction/counterexample in which the triangle

inequality does not apply. Therefore, the squared Euclidean distance isn’t a metric.

3. Question: Triangle inequality

3.1. Prove the generalized triangle inequality, i.e. that for some metric space (X, d), n > 2, and
x1, . . . , xn−1, xn ∈ X, it holds that

d (x1, xn) ≤ d (x1, x2) + d (x2, x3) + . . .+ d (xn−1, xn) .

Solution:

We prove the generalized triangle inequality by induction. The case n = 3 follows from definition of
a metric. Suppose the statement is true for n = k. For n = k + 1,

d (x1, xk+1) ≤ d (x1, xk) + d (xk, xk+1)

≤ d (x1, x2) + d (x2, x3) + . . .+ d (xk−1, xk) + d (xk, xk+1)

where the last inequality follows from the induction hypothesis. Since k ≥ 3 is arbitrary, the state-
ment follows from induction.

3.2. Using the triangle inequality, show that for any metric d

|d(x, z)− d(y, z)| ≤ d(x, y) .
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Solution:

Suppose (X, d) is a metric space. For any x, y, z in X, we have

d(x, z) ≤ d(x, y) + d(y, z)

by the triangle inequality, so that

d(x, z)− d(y, z) ≤ d(x, y)

Now interchange x and y. Using the symmetry of the metric d (property 2 of metrics) we also obtain

d(y, z)− d(x, z) ≤ d(x, y)

Combining the last two inequalities we find

|d(x, z)− d(y, z)| ≤ d(x, y) .

3.3. Using the triangle inequality, show that for any metric d

|d(x, y)− d(z, w)| ≤ d(x, z) + d(y, w) .

Solution:

Suppose (X, d) is a metric space. For any x, y, z, w in X, the generalised triangle inequality yields

d(x, y) ≤ d(x, z) + d(z, w) + d(w, y)

=⇒ d(x, y)− d(z, w) ≤ d(x, z) + d(w, y)

Furthermore,

= d(x, z) + d(y, w) [ by symmetry of d ]
d(z, w) ≤ d(z, x) + d(x, y) + d(y, w)

=⇒ d(z, w)− d(x, y) ≤ d(z, x) + d(y, w)
= d(x, z) + d(y, w) [ by by symmetry of d ]

Again, combining these two inequalities yields the desired statement.

4. Question: Open sets

4.1. Are the following sets open or closed in the metric spaces (R2, dEuclidean) and (R, dEuclidean), respec-
tively? Prove your answer.

(a) A =
{
(x, y) ∈ R2 : x2 + y2 < 2y

}
(b) B =

{
x ∈ R : x3 + 2x2 − 3x ≤ 0

}
Solution:

(a) A is an open set. Completing the square, one may express the given set in the form

A =
{
(x, y) ∈ R2 : x2 + y2 − 2y < 0

}
=

{
(x, y) ∈ R2 : x2 + (y − 1)2 < 1

}
,

which, for a =

(
0
1

)
is equal to the open ball B1(a).

In particular, A is open in R2 because every open ball is open in R2.
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(b) B is a closed set. To prove this, it suffices to show that the complement of A is open in R.
Since

x3 + 2x2 − 3x = x
(
x2 + 2x− 3

)
= x(x+ 3)(x− 1)

one has x3 + 2x2 − 3x > 0 if and only if x ∈ (−3, 0) ∪ (1,∞). Thus, the complement of B is
the union of two open sets, so the complement of B is open and B is closed.

Note: Parentheses, (), denote open interval endpoints wile square brackets, [ ], denote closed end-
points. For example, the half-open interval [0, 1) contains 0, but not 1.

4.2. Suppose (X, d) is a metric space and f : X → R is continuous. Show that B = {x ∈ X : |f(x)| < r} is
open in X for each r > 0.

Solution:

The given set can be expressed in the form

A = {x ∈ X : −r < f(x) < r} = f−1
(
(−r, r)

)
.

Since (−r, r) is open in R, its inverse image A under continuous function f must then be open in X
by Proposition 1.4.

4.3. Show that every function f : X → Y is continuous when X,Y are metric spaces and the metric on X
is the so-called discrete metric, defined as

d : X ×X −→ {0, 1}, (x, y) 7→ 1x ̸=y :=

{
1, x ̸= y,

0, otherwise, i.e. x = y
.

Solution:

We use the epsilon-delta criterion to show that any such f is continuous. Let ε > 0 be given and
take δ = 1. Then, ∀x, y ∈ X

dX(x, y) < δ =⇒ x = y =⇒ dY (f(x), f(y)) = dY (f(x), f(x)) = 0 < ε .

Since this holds ∀x ∈ X, every function f : X −→ Y in this setting is continuous.

4.4. Suppose f : X → Y is a constant function between metric spaces, say f(x) = y0 for all x ∈ X. Show
that f is continuous.

Solution:

To show that f is continuous, we again use the epsilon-delta criterion.
Let ε > 0 be given and δ > 0 be arbitrary. Then, ∀x, y ∈ X

dX(x, y) < δ =⇒ dY (f(x), f(y)) = dY (y0, y0) = 0 < ε ,

so f is continuous by the same reasoning as in 3.4.

If you have any questions or feedback, please feel free to contact me via E-mail at
hannah.kuempel@stat.uni-muenchen.de!!

Also, thank you to Chee Han Tan and Paschalis Karageorgis, whose exercises this sheet was
heavily inspired by.
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