1. Question: Convex Functions (*elementary*)

1.1. Which of the following functions are convex? (Hint: draw a picture)

- (i) $f : \mathbb{R} \longrightarrow \mathbb{R}, x \mapsto |x|$
- (ii) $f : \mathbb{R} \longrightarrow \mathbb{R}, x \mapsto \cos(x)$
- (iii) $f: \mathbb{R} \longrightarrow \mathbb{R}, x \mapsto x^2$

1.2. Prove that the following functions are convex.

- (i) affine linear functions, i.e. $f : \mathbb{R}^d \longrightarrow \mathbb{R}, x \mapsto a^T x + c$ for $a \in \mathbb{R}^d, c \in \mathbb{R}$,
- (ii) norms, i.e. $x \mapsto ||x||$,
- (iii) sums of convex functions f_k , i.e. $f(x) = \sum_{k=1}^n f_k(x)$,
- (iv) $F(x) := \sup_{f \in \mathcal{F}} f(x)$ for a set of convex functions \mathcal{F} .

2. Question: Lipschitz Continuous Functions (*elementary*)

- 2.1. Which of the following functions are Lipschitz
 - (i) $f:[1,2] \to \mathbb{R}, x \mapsto x^3$
 - (ii) $f: \mathbb{R} \longrightarrow \mathbb{R}, \ x \mapsto x^2$
- **2.2.** Prove the following for Lipschitz functions $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$.
 - (i) The composition $f \circ g : \mathbb{R} \to \mathbb{R}$ is Lipschitz.
 - (ii) The sum $f + g : \mathbb{R} \to \mathbb{R}$ defined by (f + g)(x) = f(x) + g(x) is Lipschitz.
- **2.3.** Show that any Lipschitz function $f : [a, b] \to \mathbb{R}$ defined on an interval of the form [a, b] is a bounded function.
- **2.4.** Show that $h: [0,1] \to \mathbb{R}$ given by $h(x) = \sqrt{x}$, is bounded, but not Lipschitz.

3. Question: Optimization (*elementary*)

Consider an optimization problem

$$\min_{x \in \Omega} f(x) \tag{(*)}$$
s.t. $x \in \Omega$.

- **3.1.** Prove that if $\Omega = \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}$ is convex and differentiable, any point \bar{x} that satisfies $\nabla f(\bar{x}) = 0$ is a global minimum.
- **3.2.** Prove that if $f : \mathbb{R}^n \to \mathbb{R}$ is strictly convex on Ω and Ω is a convex set, the optimal solution (assuming it exists) must be unique.
- **3.3.** Consider the optimization problem of (\star) under the additional constraint that $Ax = b, A \in \mathbb{R}^{m \times n}$. Prove that if f is a convex function, a point $x \in \mathbb{R}^n$ is optimal to this constrained optimization problem if and only if it is feasible and $\exists \mu \in \mathbb{R}^m$ s.t.

$$\nabla f(x) = A^T \mu.$$

Hint: Start with what the first order condition for convexity tells us about the term $\nabla f^T(x)(y-x)$ for y: Ay = b and use the fact that y with Ay = b can be written as y = x + v, for $v \in Nul(A)$.

4. Question: Bregman Divergence (advanced, to see what Lipschitz continuity can be used for)

The Bregman Divergence $D_f^{(B)}$ of a continuously differentiable function $f : \mathbb{R}^d \to \mathbb{R}$ is defined as the error of the linear approximation and is related to μ -strong convexity and Lipschitz continuous gradients as follows

$$\frac{\mu}{2} \|x - x_0\|^2 \overset{(\text{definition})}{\leq} \underbrace{\frac{f(x) - f(x_0) - \langle \nabla f(x_0), x - x_0 \rangle}{=:D_t^{(B)}(x, x_0)}}_{=:D_t^{(B)}(x, x_0)} \overset{\text{L-Lipschitz gradient}}{\leq} \frac{L}{2} \|x - x_0\|^2$$

For $\mu = 0$ this is simply the convexity condition. So non-negativity of the Bregman divergence implies convexity. The *L*-Lipschitz gradients provide us with an upper bound on the Bregman divergence on the other hand which immediately results in an upper bound on f

$$f(x) = f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle + \underbrace{D_f^{(B)}(x, x_0)}_{\leq \frac{L}{2} ||x - x_0||^2}.$$
 (UB)

Prove for functions f with L-Lipschitz gradients, we have for all x_0

$$\min_{x} f(x) \le f(x_{0}) - \frac{1}{2L} \left\| \nabla f(x_{0}) \right\|^{2}$$

by minimizing the upper bound (UB). What is the minimizer of the upper bound? Hint: Try minimizing first w.r.t $x : ||x - x_0|| = r$ and then r. Additionally you will need the Cauchy-Schwartz inequality, whereby, for vectors \mathbf{u} and $\mathbf{v} : |\langle \mathbf{u}, \mathbf{v} \rangle| \le ||\mathbf{u}|| ||\mathbf{v}||$.

If you have any questions or feedback, please feel free to contact me via E-mail at hannah.kuempel@stat.uni-muenchen.de!!

Also, thank you to Felix Benning & Prof. Dr. Simon Weißmann, Andy Hammerlindl, Kevin Jamieson & Anna Karlin, and A.A. Ahmadi whose exercises this sheet was inspired by.