1. Question: Basic Inequalities (very elementary)

Let X be an exponential random variable with parameter $\lambda = 12$, i.e. with density

$$f_X(x) = \begin{cases} 12e^{-12x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

- **1.1.** Use Markov's inequality to find an upper bound for P(X > 6).
- **1.2.** Use Chebyshev's inequality to find an upper bound for P(X > 6).
- **1.3.** Explicitly compute the probability above and compare with the upper bounds you derived.

2. Question: Transformations of Several Random Variables (*elementary*)

2.1. Let X and Y be independent random variables with cumulative distribution functions F_X and F_Y , respectively. Show that the cumulative distribution function of X + Y is

$$F_{X+Y}(t) = \int F_Y(t-x) d\mathbb{P}_X(x). \tag{(\star)}$$

- **2.2.** The concept of **2.1** is also referred to as *convolution*. Specifically write out the pmf and pdf of X + Y when X and Y are discrete and continuous RVs, respectively. *Hint: You may use that in* (\star) , *integration and differentiation are interchangeable* by the dominated convergence theorem and mean value theorem.
- **2.3.** Let X be a uniform distribution on [0,1], i.e. $f_X(x) = \frac{1}{1-0} \mathbb{1}_{x \in [0,1]}$, and Y be a uniform distribution on [1,2], i.e. $f_Y(x) = \frac{1}{2-1} \mathbb{1}_{x \in [1,2]}$. Find f_Z for Z := X + Y.
- **2.4.** Determine the cdf of the random variable $Z := \min\{X, Y\}$ for independent random variables X and Y. What does the pdf look like if X and Y are continuous?

3. Question: Convergence of Random Variables (*elementary*)

- **3.1.** Consider a sequence of random variables $(X_n : n \in \mathbb{N})$ such that $X_n \xrightarrow{L^p} X$, then $X_n \xrightarrow{P} X$.
- **3.2.** Let X_1, \ldots, X_n be IID with finite mean $\mu = \mathbb{E}(X_1)$ and finite variance $\sigma^2 = \mathbb{V}(X_1)$. Let \overline{X}_n be the sample mean and let S_n^2 be the sample variance.
 - (i) Show that $\mathbb{E}[\bar{X}] = \mu$ and $\mathbb{E}(S_n^2) = \sigma^2$. (You may use that $E(\bar{X}^2) = \frac{\sigma^2}{n} + \mu^2$.)
 - (ii) Show that $S_n^2 \xrightarrow{P} \sigma^2$. Hint: Show that $S_n^2 = c_n n^{-1} \sum_{i=1}^n X_i^2 d_n \bar{X}_n^2$ where $c_n \to 1$ and $d_n \to 1$. Apply the law of large numbers to $n^{-1} \sum_{i=1}^n X_i^2$ and to \bar{X}_n . Then use part (e) of Theorem 11.1.
- **3.3.** Let X_1, X_2, \ldots be a sequence of random variables such that

$$\mathbb{P}\left(X_n = \frac{1}{n}\right) = 1 - \frac{1}{n^2}$$
 and $\mathbb{P}\left(X_n = n\right) = \frac{1}{n^2}$

Does X_n converge in probability? Does X_n converge in L^2 ?

3.4. Construct an example where $X_n \rightsquigarrow X$ and $Y_n \rightsquigarrow Y$ but $X_n + Y_n$ does not converge in distribution to X + Y.

4. Question: Miscellaneous Probability Theory (*slighty more advanced*)

- **4.1.** Let X be a random variable with $\mathbb{E}[X]^2 < \infty$ and let Y = |X|. Suppose that X has a Lebesgue density symmetric about 0. Show that X and Y are uncorrelated (i.e. $Cov(X, Y) = \mathbb{E}[XY] \mathbb{E}[X]EY = 0$), but they are not independent.
- **4.2.** Show that a random variable X is independent of itself if and only if X is constant a.s. Can X and f(X) be independent, where f is a Borel function?
- **4.3.** Let X be a random variable having a cumulative distribution function F with corresponding probability measure \mathbb{P} . Show that if $\mathbb{E}[X]$ exists, then

$$\mathbb{E}[X] = \int_0^\infty [1 - F(x)] dx - \int_{-\infty}^0 F(x) dx.$$

If you have any questions or feedback, please feel free to contact me via E-mail at hannah.kuempel@stat.uni-muenchen.de!!

Also, thank you to Jun Shao, the authors of the book *All of Statistics: A Concise Course in Statistical Inference*, and Mark Hermanwhose exercises this sheet was inspired by.