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1 Some miscellaneous Basics

Illustration 1.1 (Set operations)

Quick reminder of the fundamental set operations. For
a single element x in a set, we write x ∈ A.

Illustration 1.2

Visual representation of a function.

1.1 Normed and Metric Spaces

Definition 1.1 (Norm(ed Space)). Let S be a set (usu-
ally a vector space) over the real field R. A norm on S is a
function with domain S and codomain [0,∞[, its value at
an element (vector) x usually indicated by ∥x∥ (or some-
thing similar), that satisfies the following properties:

1. ∥x∥ = 0 if and only if x = 0.

2. ∥λx∥ = |λ|∥x∥ for all x ∈ S and λ ∈ R.

3. (Triangle inequality) ∥x + y∥ ≤ ∥x∥ + ∥y∥ for all x
and y in S [i.e. ∀x, y ∈ S].

Definition 1.2 (Metric). A metric on the set S is a func-
tion d : S × S → [0,∞[ that satisfies the following condi-
tions (or axioms for metrics):

1. ∀x, y ∈ S we have d(x, y) = 0 if and only if x = y.

2. (Symmetry) ∀x, y ∈ S we have d(x, y) = d(y, x).

3. (Triangle inequality) ∀x, y, z ∈ S we have

d(x, z) ≤ d(x, y) + d(y, z) .

Definition 1.3. A metric space is a set S equipped with
a metric; more precisely it is an ordered pair (S, d), where
S is a set and d a metric on S.

Remark 1.1. A norm on a vector space will al-
ways give rise to a metric on the same vector space
by taking the norm of the difference between two
vectors. Specifically, if (S, ∥ · ∥) is a normed vector
space, then

d : S × S → R , (x, y) 7→ ∥x− y∥

is a metric on S.

1.2 Open and Closed Sets

For the following definitions, let S be a set equipped
with a metric d.
Definition 1.4 (ε-Balls). We define open balls and closed
balls in S. Consider a ∈ S and ε > 0 :

a) The open ball with centre a and radius ε is the set

Bε(a) = {x ∈ S : d(a, x) < ε}

b) The closed ball with centre a and radius ε is the set

B−
ε (a) = {x ∈ S : d(a, x) ≤ ε} .

Definition 1.5 (Open Set). A set A ⊂ S is open if and
only if, for each a ∈ A, there exists r > 0, such that
Br(a) ⊂ A.

Definition 1.6 (Closed Set). A set M ⊂ S is said to be
closed if its complement MC := X \M is open.

Proposition 1.1. An open ball Br(a) is an open
set.

Proof. This is another example showing the impor-
tance of the triangle inequality. Let b ∈ Br(a).
Choose s, such that 0 < s < r − d(a, b). Then
Bs(b) ⊂ Br(a), because if x ∈ Bs(b) we have

d(x, a) ≤ d(x, b) + d(b, a) < s+ d(b, a) < r.

Illustration 1.3 Br(a) and Bs(b) for Euclidean distance.

This would enable us to guess that the condition 0 < s <
r − d(a, b) leads to Bs(b) ⊂ Br(a). Source: [4, p.38].

Proposition 1.2. A closed ball B−
r (a) is a closed set.
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Proposition 1.3. (i) The union of open subsets in S
is always open.

(ii) The intersection of closed subsets in S is always
closed.

Note 1.1. The proofs of Propositions 1.2 and 1.3
may be found in [4], but are also very intuitive - feel
free to try yourself !

Definition 1.7 (Bounded set). A set A ⊂ S is said to
be bounded if there exist a ∈ S and r > 0, such that
A ⊂ Br(a).

1.3 Minimal Function Properties

Illustration 1.4 Injective, Surjective, Bijective Functions

Nice representation of basic function characteristics.
Source: MathIsFun.

Definition 1.8 (Continuous function). Consider two met-
ric spaces (X, dX) and (Y, dY ). Let f : X → Y and let
a ∈ X. We say that f is continuous at the point a if the
following condition is satisfied:

∀ε > 0 ∃δ > 0, such that dY (f(x), f(a)) < ε ∀x ∈ X
that satisfy dX(x, a) < δ.

We say that f is continuous if it is continuous at every
point a ∈ X.

Remark 1.2. The condition of Definition 1.8 is
called the epsilon-delta criterion. Equivalently,
we could say that a function is continuous at a ∈ X
if

∀ε > 0 ∃δ > 0, such that f (Bδ(a)) ⊂ Bε(f(a)),

where it should be understood by the context
whether Br(·) refers to X (left) or Y (right).

Note 1.2. There are several other ways to define
continuity of functions, some of which we might ex-
plore in the future. The above version is just what is
possible with the previous definitions in this booklet.

Proposition 1.4. Consider two metric spaces (X, dX)
and (Y, dY ) and a function f : X → Y . The following
three conditions are equivalent:

1. f is continuous.

2. f−1(U) is open in X whenever U is open in Y .

3. f−1(U) is closed in X whenever U is closed Y .

Proof. See [4, p. 54]

2 Systems of Linear Equa-
tions & Matrix Algebra

Definition 2.1. (i) A linear equation in the vari-
ables x1, . . . , xn, n ∈ N>0, is an equation that can
be written in the form

a1x1 + a2x2 + · · ·+ anxn = b

where b and the coefficients a1, . . . , an are real or
complex numbers, usually known in advance.

(ii) A system of linear equations (or a linear sys-
tem) is a collection of one or more linear equations
involving the same variables - say, x1, . . . , xn.

(iii) A solution of a given system of linear equations is
a tuple (s1, s2, . . . , sn) of numbers that makes each
equation a true statement when the values s1, . . . , sn
are substituted for x1, . . . , xn, respectively.

Illustration 2.1 Visual example of linear systems

Source: [3, p.3]

Definition 2.2 (Matrix). With m,n ∈ N>0, a m×n ma-
trix A is an m · n-tuple of elements aij , i = 1, . . . ,m, j =
1, . . . , n, which is ordered according to a rectangular
scheme consisting of m rows and n columns:

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
...

an1 am2 · · · anm

 .

In the most common case of aij ∈ R, A is a real-valued
matrix.
For an arbitrary n ∈ N>0, we refer to a n × 1 matrix v
as a (column) vector. The (row) vector containing the
same values, but in a 1× n matrix, is denoted by v⊤, see
Definition 2.3 for the ⊤-notation.
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Matrix Addition/Multiplication

The sum of two real-valued matrices A ∈
Rm×n,B ∈ Rm×n is defined as the elementwise
sum, i.e.,

A+B :=

 a11 + b11 · · · a1n + b1n
...

...
am1 + bm1 · · · amn + bmn

 ∈ Rm×n.

For real-valued matrices A ∈ Rm×n,B ∈ Rn×k,
the elements cij of the product C = AB ∈ Rm×k

are computed as

cij =

n∑
l=1

ailblj , i = 1, . . . ,m, j = 1, . . . , k.

Illustration 2.2 Vector multiplication

An illustration of the fact that multiplying a row with a
column vector will yield a result of different dimension
that multiplying a column with a row vector - a scalar
vs a matrix!

Illustration 2.3 Matrix multiplication

Not all matrices may be multiplied together! The inner
dimension (red circles in above illustration) always has to
match. The dimension of the result will then be deter-
mined by the outer dimensions of the multiplied matrices.

Notation 2.1. We denote both the matrix an vector
of zero-elements as 0, with the dimension usually in-
ferred from context. Otherwise, the dimension may
be specified via the index, such as 0n or 0n×m.
Furthermore, for n ∈ N>0, we define the real-valued
identity matrix as

In :=



1 0 · · · 0 · · · 0
0 1 · · · 0 · · · 0
...

...
. . .

...
. . .

...
0 0 · · · 1 · · · 0
...

...
. . .

...
. . .

...
0 0 · · · 0 · · · 1


∈ Rn×n .

Matrix Operation Properties

• Associativity:
∀A ∈ Rm×n,B ∈ Rn×p,C ∈ Rp×q :

(AB)C = A(BC)

• Distributivity:
∀A,B ∈ Rm×n,C,D ∈ Rn×p :

(A+B)C = AC +BC
A(C +D) = AC +AD

• Multiplication with the identity matrix:

∀A ∈ Rm×n : ImA = AIn = A

Note that Im ̸= In for m ̸= n.

• Multiplication with a scalar:
∀A ∈ Rm×n, λ ∈ R :

λA = B, with bij = λaij .

Definition 2.3 (Transpose). For a m× n matrix A, the
n × m matrix B with bij = aji, ∀i ∈ {1, . . . ,m}, j ∈
{1, . . . , n}, m,n ∈ N>0 is called the transpose of A. We
write B = A⊤.

Note 2.1. In general, A⊤ can be obtained by writing
the columns of A as the rows of A⊤.

Definition 2.4 (Square and symmetric matrices). When
a matrix has the same number of rows and columns, it is
called square. A square n × n matrix A is symmetric if
A = A⊤.

Definition 2.5 (Inverse). Consider a real-valued square
matrix A ∈ Rn×n. If a matrix B ∈ Rn×n with the prop-
erty that AB = In = BA exists, A is called invertible
and B is called the inverse of A, denoted by A−1.

Calculation Rule 2.1. Inverse of Matrices

AA−1 = I = A−1A

(AB)−1 = B−1A−1

(A+B)−1 ̸= A−1 +B−1

4
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Calculation Rule 2.2. Transpose of Matrices(
A⊤

)⊤
= A

(AB)⊤ = B⊤A⊤

(A+B)⊤ = A⊤ +B⊤

Illustration 2.4 Special Matrices

Notation 2.2 (Compact representation and aug-
mented matrix). Using matrix algebra, we can write
a system of linear equations (see Definition 2.1)
as  a11 · · · a1n

...
...

am1 · · · amn


 x1

...
xn

 =

 b1
...
bm

 .

The corresponding augmented matrix is given by a11 · · · a1n b1
...

...
...

am1 · · · amn bm


(where the vertical line is optional).

Definition 2.6. A rectangular matrix is in echelon form
(or row echelon form) if it has the following three proper-
ties:

1. All nonzero rows are above any rows of all zeros.

2. Each leading entry of a row is in a column to the
right of the leading entry of the row above it.

3. All entries in a column below a leading entry are
zeros.

If a matrix in echelon form satisfies the following two ad-
ditional conditions, then it is in reduced echelon form:

4. The leading entry in each nonzero row is equal to 1.

5. Each leading 1 is the only nonzero entry in its col-
umn.

Illustration 2.5 Row Echelon Form

Source: Example 1 of [3]

Calculation Rule 2.3. Gaussian Elimination

Gaussian Elimination refers to the repeated appli-
cation of the following three operations in suitable
order:

• (Replacement) Replace one row by the sum
of itself and a multiple of another row. (I.e.
add to one row a multiple of another row.)

• (Interchange) Interchange two rows.

• (Scaling) Multiply all entries in a row by a
nonzero constant.

Among other applications, we can solve a system of
linear equations by applying these operations to its
augmented matrix to obtain the row echelon form
and performing back substitution.

3 Vector Spaces

Definition 3.1. A vector space is a nonempty set V of
objects, called vectors, on which are defined two opera-
tions, called addition and multiplication by scalars, sub-
ject to the ten axioms (or rules) listed below. The axioms
must hold for all vectors u,v,w ∈ V and scalars c, d ∈ R:

(i) u+ v ∈ V .

(ii) u+ v = v + u.

(iii) (u+ v) +w = u+ (v +w).

(iv) There exists a zero vector 0, so that u+ 0 = u.

(v) For each u ∈ V , ∃ − u ∈ V , so that u+ (−u) = 0.

(vi) cu ∈ V .

(vii) c(u+ v) = cu+ cv.

(viii) (c+ d)u = cu+ du.

(ix) c(du) = (cd)u.

(x) 1u = u.
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Definition 3.2 (Subspace). A subspace of a vector space
V is a subset H of V that has three properties:

a. The zero vector of V is in H.

b. H is closed under vector addition. That is, for each
u and v in H, the sum u+ v is in H.

c. H is closed under multiplication by scalars. That is,
for each u in H and each scalar c, the vector cu is
in H.

Example 3.1 (Some vector spaces)

1. The set V = {0} with the operations 0+0 =
0 und c0 = 0, ∀c ∈ R. is a vector space.

2. The set of all m×n - matrices with the usual
operations for addition and scalar multiplica-
tion is a vector space. Here, the zero vector
is the zero matrix 0 ∈ Rm×n.

3. It is easily verified that for any n ∈ N>0, Rn

is a vector space.

Illustration 3.1

The (x1, x2) plane as a subspace of R3. Source: Figure 7
of [3]

Definition 3.3 (Span). The set of all linear combinations
of given vectors a1, . . . ,ak ∈ Rn is called the span or the
set spanned by the vectors:

span {a1, . . . ,ak} = {c1a1 + · · ·+ ckak : c1, . . . , ck ∈ R}

Proposition 3.1. For any subset S = {s1, . . . , sk}
with s1, . . . , sk ∈ V, span{s1, . . . , sk} is a subspace of V .

Proof. Properties a and c from Definition 3.2 clearly
hold by setting c1 = · · · = ck = 0 and ci = c, cj = 0
∀{1, . . . , k} ∋ j ̸= i, respectively. So, it suffices to
show that span{s1, . . . , sk} is closed under linear com-
binations. Let u, v ∈ span{s1, . . . , sk} and λ, µ be
constants. By the definition of span{s1, . . . , sk}, there
are constants ci and di such that:

u = c1s1 + c2s2 + . . .

v = d1s1 + d2s2 + . . .

⇒ λu+ µv = λ

k∑
i=1

cisi + µ

k∑
i=1

disi

= (λc1 + µd1) s1 + (λc2 + µd2) s2 + . . .

This last sum is a linear combination of elements
of S, and is thus in span{s1, . . . , sk}. Then
span{s1, . . . , sk} is closed under linear combinations,
and is thus a subspace of V .

Definition 3.4. An indexed set of vectors {v1, . . . ,vp} is
said to be linearly independent if the vector equation

x1v1 + x2v2 + · · ·+ xpvp = 0

has only the trivial solution. The set {v1, . . . ,vp} is said
to be linearly dependent if there exist weights c1, . . . , cp,
not all zero, such that

c1v1 + c2v2 + · · ·+ cpvp = 0 .

Definition 3.5 (Basis). Let H be a subspace of a vector
space V . An indexed set of vectors B = {b1, . . . ,bp} in V
is a basis for H if

(i) B is a linearly independent set, and

(ii) the subspace spanned by B coincides with H; that
is,

H = Span {b1, . . . ,bp} .

Example 3.2 (Basis of R3)

The standard basis of R3 is


1
0
0

 ,

0
1
0

 ,

0
0
1

,

but so is


a
0
0

 ,

0
b
0

 ,

0
0
c

 for any a, b, c ∈ R.

Can you think of more bases for R3?

Definition 3.6. If a vector space V is spanned by a fi-
nite set, then V is said to be finite-dimensional, and
the dimension of V , written as dim(V ), is the number
of vectors in a basis for V . The dimension of the zero
vector space {0} is defined to be zero. If V is not spanned
by a finite set, then V is said to be infinite-dimensional.

Proposition 3.2 (The Basis Theorem). Let V be a p-
dimensional vector space, p ≥ 1. Any linearly independent
set of exactly p elements in V is automatically a basis for
V . Any set of exactly p elements that spans V is automat-
ically a basis for V .

Proof. See Theorem 12 on page 229 of [3].

Proposition 3.3. If a vector space V has a basis B =
{b1, . . . ,bn}, then any set in V containing more than n
vectors must be linearly dependent.

Proof. See Theorem 9 on page 227 of [3].

Definition 3.7 (Column space). The column space of
an m × n matrix A, written as Col(A), is the set of
all linear combinations of the columns of A. If A =[
a1 · · · an

]
, then

Col(A) = Span {a1, . . . ,an} .
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Definition 3.8. (Kernel) The kernel or null space of an
m×n matrix A, written as NulA, is the set of all solutions
of the homogeneous equation Ax = 0. In set notation,

Ker(A) = Nul(A) = {x : x is in Rn and Ax = 0} .

Definition 3.9 (Linear transformation). A linear trans-
formation T from a vector space V into a vector space
W is a rule that assigns to each vector x in V a unique
vector T (x) in W , such that

(i) T (u+ v) = T (u) + T (v) for all u,v in V , and

(ii) T (cu) = cT (u) for all u in V and all scalars c.

Definition 3.10. Let T : V → W be a linear mapping
between two vector spaces V and W .

• The image set is defined as

Im(T ) = {w ∈ W : T (v) = w for a v ∈ V }.

and the rank of T is defined as the dimension of the
image, i.e. rank(T ) = dim(Im(T )).

• The kernel is defined as

Ker(T ) = {v ∈ V : T (v) = 0} .

Illustration 3.2

A more dynamic description of Ker(A) is the set of all
x in Rn that are mapped into the zero vector of Rm via
the linear transformation x 7−→ Ax. Source: Figure 1 on
page 201 of [3].

Subspaces associated with a linear transformation.
Source: Figure 2 on page 206 of [3].

Definition 3.11 (Rank). The rank of a matrix A is de-
fined as the dimension or its column space, i.e.

rank(A) = dim (Col(A)) .

A matrix A ∈ Rm×n (where m can be equal to n) is said
to have full rank, if rank(A) = max{m,n}.

Note 3.1. Sometimes, equivalently, one refers to
column rank and row rank as the number of lin-
early independent columns or rows, respectively, of a
matrix.
A fundamental fact is that the column rank always
equals the row rank. This is equivalent to the follow-
ing fact:

rank(A) = rank(A⊤) .

Calculation Rule 3.1. Determining the rank

Generally, the rank of a matrix is calculated by
bringing it into a simpler form (like row Echelon
form via Gaussian elimination). The rank then
equals the number of the number of non-zero rows
and also the number of pivots (or basic columns).

Theorem 3.1 (The Rank (nullity) Theorem). If a matrix
A has n columns, then rank(A) + dim (Ker(A)) = n.

Note 3.2. In linear algebra, subspaces often arise in
two variants:

• As the solution set of an linear system Ax = 0.

• As a span of given vectors span{v1, . . . , vn}.

Furthermore, we refer to those variables in a system
of linear equations that are not constrained by the
equations, allowing them to take any value, as free
variables. They correspond to columns in the ma-
trix that do not have a leading 1 (pivot) in reduced
row echelon form. The number of free variables in
Ax = 0 will always correspond to the dimension of
the kernel of A, dim (Ker(A)).

7



Department of Statistics, LMU Math Tutorial Booklet Hannah Schulz-Kümpel
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