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GEOMETRIC ANALYSIS OF L2 REGULARIZATION

Quadratic Taylor approx of the unregularized objective Remp(θ)
around its minimizer θ̂:

R̃emp(θ) = Remp(θ̂) +∇θRemp(θ̂) · (θ − θ̂) +
1
2
(θ − θ̂)T H(θ − θ̂)

where H is the Hessian of Remp(θ) at θ̂

We notice:

First-order term is 0, because gradient must be 0 at minimizer

H is positive semidefinite, because we are at the minimizer

R̃emp(θ) = Remp(θ̂) +
1
2
(θ − θ̂)T H(θ − θ̂)
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The minimum of R̃emp(θ) occurs where ∇θR̃emp(θ) = H(θ − θ̂) is 0.
Now we L2-regularize R̃emp(θ), such that

R̃reg(θ) = R̃emp(θ) +
λ

2
∥θ∥2

2

and solve this approximation of Rreg for the minimizer θ̂ridge:

∇θR̃reg(θ) = 0

λθ + H(θ − θ̂) = 0

(H + λI)θ = Hθ̂

θ̂ridge = (H + λI)−1Hθ̂

We see: minimizer of L2-regularized version is (approximately!)
transformation of minimizer of the unpenalized version.
Doesn’t matter whether the model is an LM – or something else!
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As λ approaches 0, the regularized solution θ̂ridge approaches θ̂.
What happens as λ grows?

Because H is a real symmetric matrix, it can be decomposed as
H = QΣQ⊤, where Σ is a diagonal matrix of eigenvalues and Q
is an orthonormal basis of eigenvectors.

Rewriting the transformation formula with this:

θ̂ridge =
(

QΣQ⊤ + λI
)−1

QΣQ⊤θ̂

=
[
Q(Σ+ λI)Q⊤

]−1
QΣQ⊤θ̂

= Q(Σ+ λI)−1ΣQ⊤θ̂

So: We rescale θ̂ along axes defined by eigenvectors of H.
The component of θ̂ that is associated with the j-th eigenvector of
H is rescaled by factor of σj

σj+λ , where σj is eigenvalue.
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First, θ̂ is rotated by Q⊤, which we can interpret as projection of θ̂ on
rotated coord system defined by principal directions of H:
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j-th (new) axis is rescaled by σj
σj+λ before we rotate back.
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Decay:
σj

σj+λ

Along directions where eigenvals of H are
relatively large, e.g., σj >> λ, effect of
regularization is small.

Components / directions with σj << λ
are strongly shrunken.

So: Directions along which parameters
contribute strongly to objective are
preserved relatively intact.

In other directions, small eigenvalue of
Hessian means that moving in this
direction will not decrease objective much.
For such unimportant directions,
corresponding components of θ are
decayed away.
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