Introduction to Machine Learning

Information Theory Joint Entropy and Mutual Information I

X X

Learning goals

- Know the joint entropy
- Know conditional entropy as remaining uncertainty
- Know mutual information as the amount of information of an RV obtained by another

JOINT ENTROPY

Recap: The **joint entropy** of two discrete RVs *X* and *Y* with joint pmf $p(x, y)$ is:

$$
H(X, Y) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log(p(x, y)),
$$

 \times \times

which can also be expressed as

$$
H(X, Y) = -\mathbb{E}\left[\log(p(X, Y))\right].
$$

• For continuous RVs *X* and *Y* with joint density $p(x, y)$, the differential joint entropy is:

$$
h(X, Y) = -\int_{X \times Y} p(x, y) \log p(x, y) dxdy
$$

For the rest of the section we will stick to the discrete case. Pretty much everything we show and discuss works in a completely analogous manner for the continuous case - if you change sums to integrals.

CONDITIONAL ENTROPY

- The **conditional entropy** *H*(*Y*|*X*) quantifies the uncertainty of *Y* that remains if the outcome of *X* is given.
- \bullet *H*($Y|X$) is defined as the expected value of the entropies of the conditional distributions, averaged over the conditioning RV.
- \bullet If $(X, Y) \sim p(x, y)$, the conditional entropy $H(Y|X)$ is defined as

$$
H(Y|X) = \mathbb{E}_X[H(Y|X=x)] = \sum_{x \in \mathcal{X}} p(x)H(Y|X=x)
$$

$$
= -\sum_{x \in \mathcal{X}} p(x) \sum_{y \in \mathcal{Y}} p(y|x) \log p(y|x)
$$

$$
= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(y|x)
$$

 $= -E$ [log $p(Y|X)$].

For the continuous case with density *f* we have

$$
h(Y|X) = -\int f(x,y) \log f(x|y) \, dx \, dy.
$$

 \sim \times

CHAIN RULE FOR ENTROPY

The **chain rule for entropy** is analogous to the chain rule for probability and derives directly from it.

$$
H(X, Y) = H(X) + H(Y|X)
$$

\nProof:
$$
H(X, Y) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x, y)
$$

$$
= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x) p(y|x)
$$

$$
= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x) - \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(y|x)
$$

$$
= -\sum_{x \in \mathcal{X}} p(x) \log p(x) - \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(y|x)
$$

$$
= H(X) + H(Y|X)
$$

n-variable version:

$$
H(X_1, X_2, \ldots, X_n) = \sum_{i=1}^n H(X_i | X_{i-1}, \ldots, X_1).
$$

X \times \times

JOINT AND CONDITIONAL ENTROPY

The following relations hold:

 $H(X, X) = H(X)$ $H(X|X) = 0$ $H((X, Y)|Z) = H(X|Z) + H(Y|(X, Z))$

Which can all be trivially derived from the previous considerations.

Furthermore, if $H(X|Y) = 0$ and X, Y are discrete RV, then X is a function of *Y*, so for all *y* with $p(y) > 0$, there is only one *x* with $p(x, y) > 0$. Proof is not hard, but also not completely trivial.

 \times \times

MUTUAL INFORMATION

- The MI describes the amount of info about one RV obtained through another RV or how different their joint distribution is from pure independence.
- Consider two RVs *X* and *Y* with a joint pmf $p(x, y)$ and marginal pmfs $p(x)$ and $p(y)$. The MI $I(X; Y)$ is the Kullback-Leibler Divergence between the joint distribution and the product distribution $p(x)p(y)$:

$$
I(X; Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log \frac{p(x, y)}{p(x)p(y)}
$$

= $D_{K1}(p(x, y) || p(x)p(y))$
= $\mathbb{E}_{p(x, y)} [\log \frac{p(X, Y)}{p(X)p(Y)}].$

 \bullet For two continuous random variables with joint density $f(x, y)$:

$$
I(X; Y) = \int f(x, y) \log \frac{f(x, y)}{f(x)f(y)} dxdy.
$$

 \times \times

MUTUAL INFORMATION

We can rewrite the definition of mutual information *I*(*X*; *Y*) as

$$
I(X; Y) = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}
$$

=
$$
\sum_{x,y} p(x,y) \log \frac{p(x|y)}{p(x)}
$$

=
$$
-\sum_{x,y} p(x,y) \log p(x) + \sum_{x,y} p(x,y) \log p(x|y)
$$

=
$$
-\sum_{x} p(x) \log p(x) - \left(-\sum_{x,y} p(x,y) \log p(x|y)\right)
$$

=
$$
H(X) - H(X|Y).
$$

X $\times\overline{\times}$

So, *I*(*X*; *Y*) is reduction in uncertainty of *X* due to knowledge of *Y*.

MUTUAL INFORMATION

The following relations hold:

 $I(X; Y) = H(X) - H(X|Y)$ $I(X; Y) = H(Y) - H(Y|X)$ *I*(*X*; *Y*) \leq min{*H*(*X*), *H*(*Y*)} if *X*, *Y* are discrete RVs $I(X; Y) = H(X) + H(Y) - H(X, Y)$ *I*(*X*; *Y*) = *I*(*Y*; *X*) $I(X; X) = H(X)$

X \times \times

All of the above are trivial to prove.

MUTUAL INFORMATION - EXAMPLE

Let *X*, *Y* have the following joint distribution:

 \times \times

Marginal distribution of X is $(\frac{1}{2})$ $\frac{1}{2}$, $\frac{1}{4}$ $\frac{1}{4}$, $\frac{1}{8}$ $\frac{1}{8}$, $\frac{1}{8}$ $\frac{1}{8}$) and marginal distribution of *Y* is $\left(\frac{1}{4}\right)$ $\frac{1}{4}$, $\frac{1}{4}$ $\frac{1}{4}$, $\frac{1}{4}$ $\frac{1}{4}$, $\frac{1}{4}$ $\frac{1}{4}$), and hence $H(X) = \frac{7}{4}$ bits and $H(Y) = 2$ bits.

MUTUAL INFORMATION - EXAMPLE / 2

The conditional entropy $H(X|Y)$ is given by:

$$
H(X|Y) = \sum_{i=1}^{4} p(Y = i)H(X|Y = i)
$$

= $\frac{1}{4}H\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\right) + \frac{1}{4}H\left(\frac{1}{4}, \frac{1}{2}, \frac{1}{8}, \frac{1}{8}\right)$
+ $\frac{1}{4}H\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right) + \frac{1}{4}H(1, 0, 0, 0)$
= $\frac{1}{4} \cdot \frac{7}{4} + \frac{1}{4} \cdot \frac{7}{4} + \frac{1}{4} \cdot 2 + \frac{1}{4} \cdot 0$
= $\frac{11}{8}$ bits.

XX

Similarly, $H(Y|X) = \frac{13}{8}$ bits and $H(X, Y) = \frac{27}{8}$ bits.