
Introduction to Machine Learning

Information Theory
Joint Entropy and Mutual Information I

Learning goals
Know the joint entropy

Know conditional entropy as
remaining uncertainty

Know mutual information as the
amount of information of an RV
obtained by another



JOINT ENTROPY

Recap: The joint entropy of two discrete RVs X and Y with joint
pmf p(x , y) is:

H(X ,Y ) = −
∑
x∈X

∑
y∈Y

p(x , y) log(p(x , y)),

which can also be expressed as

H(X ,Y ) = −E [log(p(X ,Y ))] .

For continuous RVs X and Y with joint density p(x , y), the
differential joint entropy is:

h(X ,Y ) = −
∫
X×Y

p(x , y) log p(x , y)dxdy

For the rest of the section we will stick to the discrete case. Pretty much everything we

show and discuss works in a completely analogous manner for the continuous case - if

you change sums to integrals.
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CONDITIONAL ENTROPY

The conditional entropy H(Y |X) quantifies the uncertainty of Y
that remains if the outcome of X is given.

H(Y |X) is defined as the expected value of the entropies of the
conditional distributions, averaged over the conditioning RV.

If (X ,Y ) ∼ p(x , y), the conditional entropy H(Y |X) is defined as

H(Y |X) = EX [H(Y |X = x)] =
∑
x∈X

p(x)H(Y |X = x)

= −
∑
x∈X

p(x)
∑
y∈Y

p(y |x) log p(y |x)

= −
∑
x∈X

∑
y∈Y

p(x , y) log p(y |x)

= −E [log p(Y |X)] .

For the continuous case with density f we have

h(Y |X) = −
∫

f (x , y) log f (x |y)dxdy .
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CHAIN RULE FOR ENTROPY

The chain rule for entropy is analogous to the chain rule for probability
and derives directly from it.

H(X ,Y ) = H(X) + H(Y |X)

Proof: H(X ,Y ) = −
∑
x∈X

∑
y∈Y

p(x , y) log p(x , y)

= −
∑
x∈X

∑
y∈Y

p(x , y) log p(x)p(y |x)

= −
∑
x∈X

∑
y∈Y

p(x , y) log p(x)−
∑
x∈X

∑
y∈Y

p(x , y) log p(y |x)

= −
∑
x∈X

p(x) log p(x)−
∑
x∈X

∑
y∈Y

p(x , y) log p(y |x)

= H(X) + H(Y |X)

n-variable version:

H (X1,X2, . . . ,Xn) =
n∑

i=1

H (Xi |Xi−1, . . . ,X1) .
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JOINT AND CONDITIONAL ENTROPY

The following relations hold:

H(X ,X) = H(X)

H(X |X) = 0

H((X ,Y )|Z ) = H(X |Z ) + H(Y |(X ,Z ))

Which can all be trivially derived from the previous considerations.

Furthermore, if H(X |Y ) = 0 and X ,Y are discrete RV, then X is a
function of Y , so for all y with p(y) > 0, there is only one x with
p(x , y) > 0. Proof is not hard, but also not completely trivial.
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MUTUAL INFORMATION

The MI describes the amount of info about one RV obtained
through another RV or how different their joint distribution is from
pure independence.
Consider two RVs X and Y with a joint pmf p(x , y) and marginal
pmfs p(x) and p(y). The MI I(X ;Y ) is the Kullback-Leibler
Divergence between the joint distribution and the product
distribution p(x)p(y):

I(X ;Y ) =
∑
x∈X

∑
y∈Y

p(x , y) log
p(x , y)

p(x)p(y)

= DKL(p(x , y)∥p(x)p(y))

= Ep(x,y)

[
log

p(X ,Y )

p(X)p(Y )

]
.

For two continuous random variables with joint density f (x , y):

I(X ;Y ) =

∫
f (x , y) log

f (x , y)
f (x)f (y)

dxdy .

© Introduction to Machine Learning – 5 / 9



MUTUAL INFORMATION

We can rewrite the definition of mutual information I(X ;Y ) as

I(X ;Y ) =
∑
x,y

p(x , y) log
p(x , y)

p(x)p(y)

=
∑
x,y

p(x , y) log
p(x |y)
p(x)

= −
∑
x,y

p(x , y) log p(x) +
∑
x,y

p(x , y) log p(x |y)

= −
∑

x

p(x) log p(x)−

(
−
∑
x,y

p(x , y) log p(x |y)

)
= H(X)− H(X |Y ).

So, I(X ;Y ) is reduction in uncertainty of X due to knowledge of Y .
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MUTUAL INFORMATION

The following relations hold:

I(X ;Y ) = H(X)− H(X |Y )

I(X ;Y ) = H(Y )− H(Y |X)

I(X ;Y ) ≤ min{H(X),H(Y )} if X ,Y are discrete RVs

I(X ;Y ) = H(X) + H(Y )− H(X ,Y )

I(X ;Y ) = I(Y ;X)

I(X ;X) = H(X)

All of the above are trivial to prove.
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MUTUAL INFORMATION - EXAMPLE

Let X ,Y have the following joint distribution:

X1 X2 X3 X4

Y1
1
8

1
16

1
32

1
32

Y2
1

16
1
8

1
32

1
32

Y3
1

16
1

16
1
16

1
16

Y4
1
4 0 0 0

Marginal distribution of X is (1
2 ,

1
4 ,

1
8 ,

1
8) and marginal distribution of Y is

(1
4 ,

1
4 ,

1
4 ,

1
4), and hence H(X) = 7

4 bits and H(Y ) = 2 bits.
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MUTUAL INFORMATION - EXAMPLE / 2

The conditional entropy H(X |Y ) is given by:

H(X |Y ) =
4∑

i=1

p(Y = i)H(X |Y = i)

=
1
4

H
(

1
2
,

1
4
,

1
8
,

1
8

)
+

1
4

H
(

1
4
,

1
2
,

1
8
,

1
8

)
+

1
4

H
(

1
4
,

1
4
,

1
4
,

1
4

)
+

1
4

H (1, 0, 0, 0)

=
1
4
· 7

4
+

1
4
· 7

4
+

1
4
· 2 +

1
4
· 0

=
11
8

bits.

Similarly, H(Y |X) = 13
8 bits and H(X ,Y ) = 27

8 bits.
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