
Introduction to Machine Learning

Advanced Risk Minimization
Loss functions and tree splitting

Learning goals
Know how tree splitting is ’nothing
new’ and related to loss functions

Brier score minimization corresponds
to gini splitting

Bernoulli loss minimization
corresponds to entropy splitting



BERNOULLI LOSS MIN = ENTROPY SPLITTING

For an introduction on trees and splitting criteria we refer our I2ML
lecture (Chapter 6, Bischl et al. 2022 )

When fitting a tree we minimize the risk within each node N by risk
minimization and predict the optimal constant. Another common
approach is to minimize the average node impurity Imp(N ).

Claim: Entropy splitting Imp(N ) = −
∑g

k=1 π
(N )
k log π

(N )
k is equivalent

to minimize risk measured by the Bernoulli loss.
Note that π(N )

k := 1
nN

∑
(x,y)∈N

[y = k ].

Proof: To prove this we show that the risk related to a subset of
observations N ⊆ D fulfills R(N ) = nN Imp(N ),
where R(N ) is calculated w.r.t. the (multiclass) Bernoulli loss

L(y , π(x)) = −
g∑

k=1

[y = k ] log (πk(x)) .
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BERNOULLI LOSS MIN = ENTROPY SPLITTING / 2

R(N ) =
∑

(x,y)∈N

(
−

g∑
k=1

[y = k ] log πk(x)

)

(∗)
= −

g∑
k=1

∑
(x,y)∈N

[y = k ] log π(N )
k

= −
g∑

k=1

log π
(N )
k

∑
(x,y)∈N

[y = k ]

︸ ︷︷ ︸
nN ·π(N )

k

= −nN

g∑
k=1

π
(N )
k log π

(N )
k = nN Imp(N ),

where in (∗) the optimal constant per node π
(N )
k = 1

nN

∑
(x,y)∈N

[y = k ] was plugged in.
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BRIER SCORE MINIMIZATION = GINI SPLITTING

When fitting a tree we minimize the risk within each node N by risk
minimization and predict the optimal constant. Another approach that is
common in literature is to minimize the average node impurity Imp(N ).

Claim: Gini splitting Imp(N ) =
∑g

k=1 π
(N )
k

(
1 − π

(N )
k

)
is equivalent to

the Brier score minimization.
Note that π(N )

k := 1
nN

∑
(x,y)∈N

[y = k ]

Proof: We show that the risk related to a subset of observations N ⊆ D fulfills

R(N ) = nN Imp(N ),

where Imp is the Gini impurity and R(N ) is calculated w.r.t. the (multiclass) Brier score

L(y , π(x)) =
g∑

k=1

([y = k ]− πk(x))
2 .
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BRIER SCORE MINIMIZATION = GINI SPLITTING / 2

R(N ) =
∑

(x,y)∈N

g∑
k=1

([y = k ]− πk(x))
2 =

g∑
k=1

∑
(x,y)∈N

(
[y = k ]− nN ,k

nN

)2

,

by plugging in the optimal constant prediction w.r.t. the Brier score (nN ,k is defined as
the number of class k observations in node N ):

π̂k(x) = π
(N )
k =

1
nN

∑
(x,y)∈N

[y = k ] =
nN ,k

nN
.

We split the inner sum and further simplify the expression

=

g∑
k=1

 ∑
(x,y)∈N : y=k

(
1 − nN ,k

nN

)2

+
∑

(x,y)∈N : y ̸=k

(
0 − nN ,k

nN

)2


=

g∑
k=1

nN ,k

(
1 − nN ,k

nN

)2

+ (nN − nN ,k)

(
nN ,k

nN

)2

,

since for nN ,k observations the condition y = k is met, and for the remaining
(nN − nN ,k) observations it is not.
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BRIER SCORE MINIMIZATION = GINI SPLITTING / 3

We further simplify the expression to

R(N ) =

g∑
k=1

nN ,k

(
nN − nN ,k

nN

)2

+ (nN − nN ,k)

(
nN ,k

nN

)2

=

g∑
k=1

nN ,k

nN

nN − nN ,k

nN
(nN − nN ,k + nN ,k)

= nN

g∑
k=1

π
(N )
k ·

(
1 − π

(N )
k

)
= nN Imp(N ).
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