Introduction to Machine Learning

Regularization
Ridge Regression

i ) | 1 ’ | Learning goals
@ Regularized linear model

@ Ridge regression/ L2 penalty
@ Understand parameter shrinkage
@ Understand correspondence to

1 + + 1 constrained optimization
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Let y = 3x; — 2x2 + €, € ~ N(0,1). The true minimizer is
6% = (3, —2)7, with Bg9e = argmin, |ly — X8| + A|| 0|

EMect of L2 Reguiarization on Linear Model Solutions

With increasing regularization, @ndge is pulled back to the origin
(contour lines show unregularized objective).
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Contours of regularized objective for different A values.
Brge = argming [ly — XO|? + A[|0]2.

L2 Regularization: A = L2 Reguanzation: A = 10
L2 Regularization: A = 200 L2 Reguarization: A » S00

Green = true coefs of the DGP and red = ridge solution.
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We understand the geometry of these 2 mixed components in our
regularized risk objective much better, if we formulate the optimization

as a constrained problem (see this as Lagrange multipliers in reverse).

w3 (01 (010))

s.t.

i=1

613 <t

—_

NB: There is a bijective relationship between A and &: A 1 = t | and vice versa.
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Inside constraints perspective: From
origin, jump from contour line to
contour line (better) until you become
infeasible, stop before.

We still optimize the Remp(8), but
cannot leave a ball around the origin.

Rem(0) grows monotonically if we
move away from 6 (elliptic contours).

Solution path moves from origin to
border of feasible region with minimal
L, distance.

Introducson to Machine Learning - 6/10



m RIDGE REGRESSION /L2 PENALTY /s

. . @ Outside constraints perspective:
‘ | - From @, jump from contour line to x x
contour line (worse) until you become
feasible, stop then.

@ So our new optimum will lie on the
boundary of that ball.

@ Solution path moves from

unregularized estimate to feasible
) : region of regularized objective with
! \ | \ minimal L, distance.
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L2 regularization solution path
) ‘ @ Here we can see entire solution path
‘ for ridge regression
( I ‘ @ Cyan contours indicate feasile
' regions induced by different As
@ Red contour lines indicate different
levels of the unreg. objective

—
—

@ Ridge solution (red points) gets
pulled toward origin for increasing A
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EXAMPLE: POLYNOMIAL RIDGE REGRESSION

Consider y = f(x) + ¢ where the true (unknown) function is
f(x) =5+ 2x + 10x% — 2x3 (in red).

Let's use a dth-order polynomial
d
f(x) =0 +0x +---+04x% = Z(),-x’.
j=0

Using model complexity d = 10 oveffits:

Introducson to Machine Learning -~ 9/10



EXAMPLE: POLYNOMIAL RIDGE REGRESSION /2

With an L2 penalty we can now select d "too large" but regularize our
model by shrinking its coefficients. Otherwise we have to optimize over

O
the discrete d. X O
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