COEFFICIENT PATHS AND 0-SHRINKAGE

Example 1: Motor Trend Car Roads Test (mtcars)

We see how only lasso shrinks to exactly 0.

NB: No real overfitting here, as data is so low-dim.

COEFFICIENT PATHS AND 0-SHRINKAGE /2

Example 2: High-dim., corr. simulated data: p = 50; n = 100

$$y = 10 \cdot (x_1 + x_2) + 5 \cdot (x_3 + x_4) + 1 \cdot \sum_{j=5}^{14} x_j + \epsilon$$

36/50 vars are noise; $\epsilon \sim \mathcal{N}(0, 1)$; $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \Sigma)$; $\Sigma_{k,l} = 0.7^{|k-l|}$

REGULARIZATION AND FEATURE SCALING /2

- Let the DGP be $y = \sum_{j=1}^5 \theta_j x_j + \varepsilon$ for $\theta = (1, 2, 3, 4, 5)^\top$, $\varepsilon \sim \mathcal{N}(0, 1)$
- Suppose x₅ was measured in m but we change the unit to cm (x̃₅ = 100 ⋅ x₅):

Method	$\hat{\theta}_1$	$\hat{\theta}_2$	$\hat{\theta}_3$	$\hat{\theta}_4$	$\hat{\theta}_5$	MSE
OLS	0.984	2.147	3.006	3.918	5.205	0.812
OLS Rescaled	0.984	2.147	3.006	3.918	0.052	0.812

- This is because θ

 ⁶

 ⁵

 now lives on small scale while L2 constraint stays the same.
 Hence remaining estimates can "afford" larger magnitudes.

Method	$\hat{\theta}_1$	$\hat{\theta}_2$	$\hat{\theta}_3$	$\hat{\theta}_4$	$\hat{\theta}_{5}$	MSE
Ridge	0.709	11.874	2.661	3.558	4.636	11.366
Ridge Rescaled	0.802	11.943	2.675	3.569	0.051	11008

 For lasso, especially for very correlated features, we could arbitrarily force a feature out of the model through a unit change.

CORRELATED FEATURES: L1 VS L2

Simulation with n = 100:

$$y = 0.2x_1 + 0.2x_2 + 0.2x_3 + 0.2x_4 + 0.2x_5 + \epsilon$$

 x_1 - x_4 are independent, but x_4 and x_5 are strongly correlated.

- L1 removes x₅ early, L2 has similar coeffs for x₄, x₅ for larger λ
- Also called "grouping property": for ridge highly corr. features tend to have equal effects; lasso however "decides" what to select
- L1 selection is somewhat "arbitrary"

CORRELATED FEATURES: L1 VS L2/2

More detailed answer: The "random" decision is in fact a complex deterministic interaction of data geometry (e.g., corr. structures), the optimization method, and its hyperparamters (e.g., initialization). The theoretical reason for this behavior relates to the convexity of the penalties • Zou and Hastle 2005.

Considering perfectly collinear features $x_4 = x_5$ in the last example, we can obtain some more formal intuition for this phenomenon:

Because L2 penalty is strictly convex:

$$x_4 = x_5 \implies \hat{\theta}_{4,ridge} = \hat{\theta}_{5,ridge}$$
 (grouping prop.)

L1 penalty is not strictly convex. Hence, no unique solution exists if x₄ = x₅, and sum of coefficients can be arbitrarily allocated to both features while remaining minimizers (no grouping property!): For any solution θ̂_{4,lasso}, θ̂_{5,lasso}, equivalent minimizers are given by

$$\tilde{\theta}_{4,lasso} = s \cdot (\hat{\theta}_{4,lasso} + \hat{\theta}_{5,lasso}) \text{ and } \tilde{\theta}_{5,lasso} = (1-s) \cdot (\hat{\theta}_{4,lasso} + \hat{\theta}_{5,lasso}) \ \forall s \in [0,1]$$