COEFFICIENT PATHS AND 0-SHRINKAGE

Example 1: Motor Trend Car Roads Test (mtcars)
We see how only lasso shrinks to exactly 0.
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NB: No real overfitting here, as data is so low-dim.
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COEFFICIENT PATHS AND 0-SHRINKAGE /2
Example 2: High-dim., corr. simulated data: p = 50; n = 100
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y=10-(x1+X2)+5-(X3+X4)+1-ZX,'+6
j=5

36/50 vars are noise; ¢ ~ N (0,1);x ~ N (0, X); iy = 0.7/
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m REGULARIZATION AND FEATURE SCALING /2

® Letthe DGPbe y = Y, 6% + cfor =(1.2.3.4.5)", = ~ A(0.1)

Suppose xs was measured in m but we change the unit to cm (%s = 100 - xs):

Method 0, 0, 0y LA s MSE
OoLS 0984 2147 3.006 3918 5205 0812
OLSRescaled | 0.984 2147 3.006 3918 0.052 0812

Estimate fs gets scaled by 1/100 while other estimates and MSE are invariant

Running ridge regression with A = 10 on same data shows that rescaling of of xs
does not result in inverse rescaling of fs (everything changes!)

This is because (55 now lives on small scale while L2 constraint stays the same.
Hence remaining estimates can "afford™ larger magnitudes.

Method i, 2, 03 (N g MSE
Ridge D709 1@B74 2®B61 B558 4B 1.368
Ridge Rescaled || D802 1843 2675 3582 (0/051 1.08

For lasso, especially for very correlated features, we could arbitrarily force a
feature out of the model through a unit change.
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CORRELATED FEATURES: L1 VS [2

Simulation with n = 100:

y=0.2x; +0.2x, +0.2x3 + 0.2x4 + 0.2x5 + ¢

X1-X4 are independent, but x; and x5 are strongly correlated.
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® L1removes xs early, L2 has similar coeffs for x4, x5 for larger A

® Also called “grouping property": for ridge highly corr. features tend
to have equal effects; lasso however “decides” what to select

@ L1 selection is somewhat “arbitrary”
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CORRELATED FEATURES: L1 VS [2/2

More detailed answer: The “random" decision is in fact a complex
deterministic interaction of data geometry (e.g., corr. structures), the
optimization method, and its hyperparamters (e.g., initialization). The
theoretical reason for this behavior relates to the convexity of the

penalties CEITIIIEIET.

Considering perfectly collinear features x4 = x5 in the last example, we
can obtain some more formal intuition for this phenomenon:

® Because L2 penalty is strictly convex:

X4 = X5 == B4 ridge = 05 rdge (grouping prop.)

@ [1 penalty is not strictly convex. Hence, no unigue solution exists
if x4 = x5, and sum of coefficients can be arbitrarily allocated to
both features while remalnlng minimizers (no grouping property!):
For any solution 04 lasso 05 lassos €quivalent minimizers are given

by

64.!590 = 5‘(94.raso+és.fasso) and és.rsso = (1_5)'(é4jasso+és.faso)v5 € [0~ 1]
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