## Introduction to Machine Learning

# Regularization Lasso Regression





#### Learning goals

- Lasso regression / L1 penalty
- Know that lasso selects features
- Support recovery

Let 
$$y = 3x_1 - 2x_2 + \epsilon$$
,  $\epsilon \sim N(0,1)$ . The true minimizer is  $\theta^* = (3,-2)^T$ . LHS =  $L1$  regularization; RHS =  $L2$ 





With increasing regularization,  $\hat{\theta}_{lasso}$  is pulled back to the origin, but takes a different "route".  $\theta_2$  eventually becomes 0!

Contours of regularized objective for different  $\lambda$  values.





Green = true minimizer of the unreg.objective and red = lasso solution.

Regularized empirical risk  $\mathcal{R}_{\text{reg}}(\theta_1, \theta_2)$  using squared loss for  $\lambda \uparrow$ . L1 penalty makes non-smooth kinks at coordinate axes more pronounced, while L2 penalty warps  $\mathcal{R}_{\text{reg}}$  toward a "basin" (elliptic paraboloid).





We can also rewrite this as a constrained optimization problem. The penalty results in the constrained region to look like a diamond shape.

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left( y^{(i)} - f\left( \mathbf{x}^{(i)} \mid \boldsymbol{\theta} \right) \right)^2$$
 subject to:  $\|\boldsymbol{\theta}\|_1 \leq t$ 

The kinks in L1 enforce sparse solutions because "the loss contours first hit the sharp corners of the constraint" at coordinate axes where (some) entries are zero.





### L1 AND L2 REG. WITH ORTHONORMAL DESIGN

For special case of orthonormal design  $\mathbf{X}^{\top}\mathbf{X} = \mathbf{I}$  we can derive a closed-form solution in terms of  $\hat{\theta}_{OLS} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y} = \mathbf{X}^{\top}\mathbf{y}$ :

$$\hat{\boldsymbol{\theta}}_{\text{lasso}} = \text{sign}(\hat{\boldsymbol{\theta}}_{\text{OLS}})(|\hat{\boldsymbol{\theta}}_{\text{OLS}}| - \lambda)_{+} \quad \text{(sparsity)}$$

Function  $S(\theta;\lambda) \coloneqq \text{sign}(\theta)(|\theta| - \lambda)_{+}$  is called **soft thresholding** operator: For  $|\theta| \le \lambda$  it returns 0, whereas params  $|\theta| > \lambda$  are shrunken toward 0 by  $\lambda$ . Comparing this to  $\theta_{\text{Ridge}}$  under orthonormal design:

$$\hat{\boldsymbol{\theta}}_{\mathsf{Ridge}}^{\mathsf{Ridge}} \equiv (\mathbf{\ddot{x}}^{\mathsf{T}}\mathbf{\ddot{x}} + \lambda \dot{\mathbf{n}})^{-1}\mathbf{\ddot{x}}^{\mathsf{T}}\mathbf{\ddot{y}} \equiv ((1+\lambda)\mathbf{\dot{n}})^{-1}\hat{\boldsymbol{\theta}}_{\mathsf{OLS}}^{\mathsf{OLS}} \equiv \frac{\boldsymbol{\theta}_{\mathsf{OLS}}^{\mathsf{OLS}}}{1+\lambda} \quad \text{(no sparsity)}$$





### COMPARING SOLUTION PATHS FOR L1/L2

- Ridge results in smooth solution path with non-sparse params
- ullet Lasso induces sparsity, but only for large enough  $\lambda$



