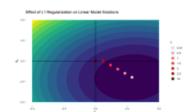
Introduction to Machine Learning

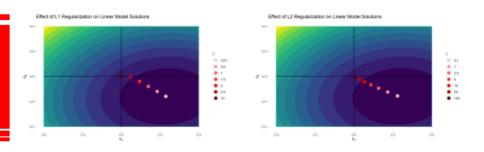
Regularization Lasso Regression



Learning goals

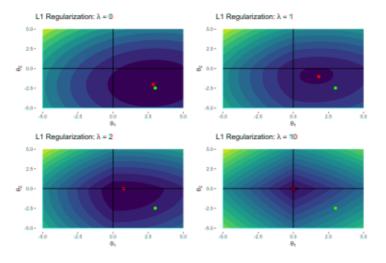
- Lasso regression / L1 penalty
- Know that lasso selects features
- Support recovery

Let
$$y = 3x_1 - 2x_2 + \epsilon$$
, $\epsilon \sim N(0,1)$. The true minimizer is $\theta^* = (3,-2)^T$. LHS = $L1$ regularization; RHS = $L2$



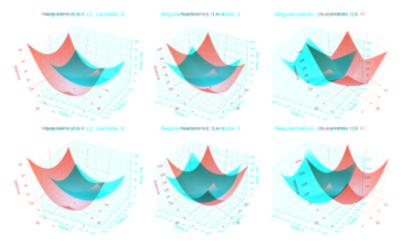
With increasing regularization, $\hat{\theta}_{lasso}$ is pulled back to the origin, but takes a different "route". θ_2 eventually becomes 0!

Contours of regularized objective for different λ values.



Green = true minimizer of the unreg.objective and red = lasso solution.

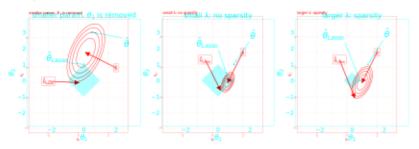
Regularized empirical risk $\mathcal{R}_{\text{reg}}(\theta_1, \theta_2)$ using squared loss for $\lambda \uparrow$. L1 penalty makes non-smooth kinks at coordinate axes more pronounced, while L2 penalty warps \mathcal{R}_{reg} toward a "basin" (elliptic paraboloid).



We can also rewrite this as a constrained optimization problem. The penalty results in the constrained region to look like a diamond shape.

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left(y^{(i)} - f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta} \right) \right)^2$$
 subject to: $\|\boldsymbol{\theta}\|_1 \leq t$

The kinks in L1 enforce sparse solutions because "the loss contours first hit the sharp corners of the constraint" at coordinate axes where (some) entries are zero.



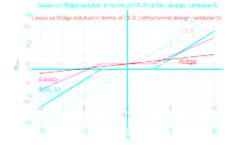
L1 AND L2 REG. WITH ORTHONORMAL DESIGN

For special case of orthonormal design $\mathbf{X}^{\top}\mathbf{X} = \mathbf{I}$ we can derive a closed-form solution in terms of $\hat{\theta}_{OLS} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y} = \mathbf{X}^{\top}\mathbf{y}$:

$$\hat{\boldsymbol{\theta}}_{\text{lasso}} = \text{sign}(\hat{\boldsymbol{\theta}}_{\text{OLS}})(|\hat{\boldsymbol{\theta}}_{\text{OLS}}| - \lambda)_{+} \quad \text{(sparsity)}$$

Function $S(\theta;\lambda) \coloneqq \text{sign}(\theta)(|\theta| - \lambda)_{+}$ is called **soft thresholding** operator: For $|\theta| \le \lambda$ it returns 0, whereas params $|\theta| > \lambda$ are shrunken toward 0 by λ . Comparing this to θ_{Ridge} under orthonormal design:

$$\hat{\boldsymbol{\theta}}_{\mathsf{Ridge}}^{\mathsf{Ridge}} \equiv (\mathbf{\ddot{x}}^{\mathsf{T}}\mathbf{\ddot{x}} + \lambda \dot{\mathbf{n}})^{-1}\mathbf{\ddot{x}}^{\mathsf{T}}\mathbf{\ddot{y}} \equiv ((1+\lambda)\mathbf{\dot{n}})^{-1}\hat{\boldsymbol{\theta}}_{\mathsf{OLS}}^{\mathsf{OLS}} \equiv \frac{\boldsymbol{\theta}_{\mathsf{OLS}}^{\mathsf{OLS}}}{1+\lambda} \quad \text{(no sparsity)}$$



COMPARING SOLUTION PATHS FOR L1/L2

- Ridge results in smooth solution path with non-sparse params
- ullet Lasso induces sparsity, but only for large enough λ

