Quadratic Taylor approx of the unregularized objective $\mathcal{R}_{emp}(\theta)$ around its minimizer $\hat{\theta}$:

$$\tilde{\mathcal{R}}_{\text{emp}}(\boldsymbol{\theta}) = \mathcal{R}_{\text{emp}}(\hat{\boldsymbol{\theta}}) + \nabla_{\boldsymbol{\theta}} \mathcal{R}_{\text{emp}}(\hat{\boldsymbol{\theta}}) \cdot (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}) + \frac{1}{2} (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})^T \boldsymbol{H}(\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})$$

where H is the Hessian of $\mathcal{R}_{emp}(\theta)$ at $\hat{\theta}$

We notice:

- First-order term is 0, because gradient must be 0 at minimizer
- H is positive semidefinite, because we are at the minimizer

$$\tilde{\mathcal{R}}_{\text{emp}}(\theta) = \mathcal{R}_{\text{emp}}(\hat{\theta}) + \frac{1}{2}(\theta - \hat{\theta})^T \mathbf{H}(\theta - \hat{\theta})$$

/ **2**

The minimum of $\tilde{\mathcal{R}}_{emp}(\theta)$ occurs where $\nabla_{\theta}\tilde{\mathcal{R}}_{emp}(\theta) = \mathbf{H}(\theta - \hat{\theta})$ is 0. Now we L2-regularize $\tilde{\mathcal{R}}_{emp}(\theta)$, such that

$$\tilde{\mathcal{R}}_{\text{reg}}(\boldsymbol{\theta}) = \tilde{\mathcal{R}}_{\text{emp}}(\boldsymbol{\theta}) + \frac{\lambda}{2} \|\boldsymbol{\theta}\|_2^2$$

and solve this approximation of $\mathcal{R}_{\mathsf{reg}}$ for the minimizer $\hat{\boldsymbol{\theta}}_{\mathsf{ridge}}$:

$$egin{aligned}
abla_{m{ heta}} \hat{\mathcal{R}}_{\mathsf{reg}}(m{ heta}) &= 0 \ \lambda m{ heta} + m{ heta}(m{ heta} - \hat{m{ heta}}) &= 0 \ (m{ heta} + \lambda m{ heta}) m{ heta} &= m{ heta} \hat{m{ heta}} \ \hat{m{ heta}}_{\mathsf{fidge}} &= (m{ heta} + \lambda m{ heta})^{-1} m{ heta} \hat{m{ heta}} \end{aligned}$$

We see: minimizer of L2-regularized version is (approximately!) transformation of minimizer of the unpenalized version.

Doesn't matter whether the model is an LM – or something else!

/ 3

- As λ approaches 0, the regularized solution θ̂_{ridge} approaches θ̂.
 What happens as λ grows?
- Because H is a real symmetric matrix, it can be decomposed as
 H = QΣQ^T, where Σ is a diagonal matrix of eigenvalues and Q
 is an orthonormal basis of eigenvectors.
- Rewriting the transformation formula with this:

$$\begin{split} \hat{\boldsymbol{\theta}}_{\mathsf{ridge}} &= \left(\boldsymbol{Q} \boldsymbol{\Sigma} \boldsymbol{Q}^{\top} + \lambda \boldsymbol{I} \right)^{-1} \boldsymbol{Q} \boldsymbol{\Sigma} \boldsymbol{Q}^{\top} \hat{\boldsymbol{\theta}} \\ &= \left[\boldsymbol{Q} (\boldsymbol{\Sigma} + \lambda \boldsymbol{I}) \boldsymbol{Q}^{\top} \right]^{-1} \boldsymbol{Q} \boldsymbol{\Sigma} \boldsymbol{Q}^{\top} \hat{\boldsymbol{\theta}} \\ &= \boldsymbol{Q} (\boldsymbol{\Sigma} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Sigma} \boldsymbol{Q}^{\top} \hat{\boldsymbol{\theta}} \end{split}$$

So: We rescale θ̂ along axes defined by eigenvectors of *H*.
 The component of θ̂ that is associated with the *j*-th eigenvector of *H* is rescaled by factor of σ_{j+λ}, where σ_j is eigenvalue.

/4

First, $\hat{\theta}$ is rotated by \mathbf{Q}^{\top} , which we can interpret as projection of $\hat{\theta}$ on rotated coord system defined by principal directions of \mathbf{H} :

