Introduction to Machine Learning

Regularization Bias-variance Tradeoff

Learning goals

- Understand the bias-variance trade-off
- Know the definition of model bias, estimation bias, and estimation variance

In this slide set, we will visualize the bias-variance trade-off.

We consider a DGR Psy with \mathcal{A} \subset \mathbb{R} and the L2 soss \mathcal{L} id we measure the distance between models fruction \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} via the distance between models $f: \mathcal{X} \to \mathbb{R}^g$ via $d(f,f') = \mathbb{E}_{\mathbf{x} \sim \mathbb{P}_{\mathbf{x}}} \left[L(f(\mathbf{x}),f'(\mathbf{x})) \right].$ $d(f,f') = \mathbb{E}_{\mathbf{x} \sim \mathbb{P}_{\mathbf{x}}} \left[L(f(\mathbf{x}),f'(\mathbf{x})) \right].$

We define to Lastherisk minimizer such that d becomes a metric, e.g., L1-loss, L2-loss, etc.

$$f_0^* \in \arg\min_{t \in \mathcal{U}} \mathbb{E}_{(\mathbf{x}, y) \sim \mathbb{P}_{xy}} [L(y, f(\mathbf{x}))]$$

We define f_{true} as the risk minimizer such that

where
$$\mathcal{H}_0 = \{f: \mathcal{X} \to \mathbb{R} | \ d(\underline{0}, f) < \infty \} \text{ and } \underline{0}: \mathcal{X} \to \{0\}.$$

$$f_{\text{true}} \in \underset{f \in \mathcal{H}_0}{\text{arg min}} \mathbb{E}_{(\mathbf{x}, y) \sim \mathbb{P}_{xy}} [L(\overline{y}, f(\mathbf{x}))]$$

where
$$\mathcal{H}_0 = \{f : \mathcal{X} \to \mathbb{R}^g | \ d(\underline{0}, f) < \infty \} \text{ and } \underline{0} : \mathcal{X} \to \{0\}.$$

Our model space \mathcal{H} usually is a proper subset of \mathcal{H}_0 and in generall in \mathcal{H}_0 \mathcal{H}_0 frue \mathcal{H} .

We define f^* as the risk minimizer in \mathcal{H} , i.e.,

$$f^* \in \mathop{\arg\min}_{f \in \mathcal{H}} \mathbb{E}_{(\mathbf{x},y) \sim \mathbb{P}_{xy}} \left[\mathit{L}(\mathit{f}(\mathbf{x},y)) \right].$$

 $f^* \in \mathcal{H}$ is closest to f_0^* ; and we call $d(f_0 \mid f^*)$ the model bias the model bias.

 \mathcal{H}_0

By regularizing our model, we further restrict the model space so that \mathcal{H}_R is a proper subset of \mathcal{H} . We define f_R^* as the risk minimizer in \mathcal{H}_R , i.e.,

$$f_R^* \in \arg\min \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \mathbb{P}_{xy}} [L(f(\mathbf{x}, y))].$$

 $f_R^* \in \mathcal{H}_R$ is closest to f_{true} , and we call $d(f_R^*, f^*)$ the estimation bias.

We sample la finite to data set $\mathcal{D}_0 = (\mathbf{x} (\mathcal{A}_{\mathcal{O}_{\mathcal{V}}}(\theta))^n \in (\mathbb{P}_{\mathbf{x}})^n$ and find via ERM subset of \mathcal{H} . We define f_B^* as the risk minimizer in \mathcal{H}_B , i.e.,

$$f_{R}^{\hat{\boldsymbol{f}}} \in \underset{j \in \mathcal{H}_{R}}{\operatorname{arg min}} \sum_{i=1}^{n} L\left(y_{xy}^{(i)}[\hat{L}(\mathbf{x}_{\mathbf{x}}^{(i)}))] \right).$$

shown in the visualization for didactic purposes but is not an element of \mathcal{H}_0 .

Let's assume that \hat{f} is an unbiased estimate of f^* (e.g., valid for linear regression), and we repeat the sampling process of \hat{f} .

- We can measure the spread of sampled \hat{f} around f^* via $\delta = \text{Var}_{\mathcal{D}} \left[d(f^*, \hat{f}) \right]$ which we call the estimation variance.
- We visualize this as a circle around f* with radius δ.

We repeat the previous construction in the restricted model space \mathcal{H}_{PM} and sample \hat{f}_{R} such that

$$\hat{f}_R \in \underset{f \in \mathcal{H}_R}{\text{arg min}} \sum_{i=1}^n$$

$$\mathcal{H}_0 \text{ Note that the proof of t$$

Note:

- $L: \mathcal{Y} \times \mathbb{R}^g \to \mathbb{R}$ is
- · We can measure the spread of
- sampled \hat{f}_R around f_R^* via wn $\delta = \text{Var}_D \left[d(f_R^* | \hat{f}_R) \right]$ which we also call estimation variance.
- We observe that the increased bias results in a smaller estimation variance in H_R compared to H.

Let's assume that \hat{f} is an unbiased estimate of f^* (e.g., valid for linear regression), and we repeat the sampling process of \hat{f} .

- We can measure the spread of sampled \hat{f} around f^* via $\delta = \operatorname{Var}_{\mathcal{D}}\left[d(f^*,\hat{f})\right]$ which we call the estimation variance.
- We visualize this as a circle around f* with radius δ.

We repeat the previous construction in the restricted model space \mathcal{H}_R and sample \hat{f}_R such that

$$\hat{f}_R \in \operatorname*{arg\,min}_{f \in \mathcal{H}_R} \sum_{i=1}^n L\left(y^{(i)}, \hat{f}(\mathbf{x}^{(i)})\right).$$

