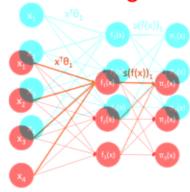
Introduction to Machine Learning

Multiclass Classification Softmax Regression



Learning goals

Know softmax regression

Learningsgoalsat softmax

- Know softmax regression of logistic regression.
- Understand that softmax regression is a generalization of logistic regression

... TO SOFTMAX REGRESSION /2

- The softmax function is a generalization of the logistic function.
 For g = 2, the logistic function and the softmax function are equivalent.
- Instead of the Bernoulli loss, we use the multiclass logarithmic loss

$$L(y, \pi(\mathbf{x})) = -\sum_{k=1}^{g} \mathbb{1}_{\{y=k\}} \log (\pi_k(\mathbf{x})).$$

- Note that the softmax function is a "smooth" approximation of the arg max operation, so s((1,1000,2)^T) ≈ (0,1,0)^T (picks out 2nd element!).
- Furthermore, it is invariant to constant offsets in the input:

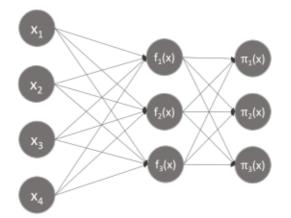
$$s(f(\mathbf{x})+\mathbf{c}) = \frac{\exp(\boldsymbol{\theta}_k^{\top}\mathbf{x}+c)}{\sum_{j=1}^{g}\exp(\boldsymbol{\theta}_j^{\top}\mathbf{x}+c)} = \frac{\exp(\boldsymbol{\theta}_k^{\top}\mathbf{x})\cdot\exp(c)}{\sum_{j=1}^{g}\exp(\boldsymbol{\theta}_j^{\top}\mathbf{x})\cdot\exp(c)} = s(f(\mathbf{x}))$$

LOGISTIC VS. SOFTMAX REGRESSION

	Logistic Regression	Softmax Regression
	Logistic Regression	Softmax Regression
y	{0, 1}	$\{1, 2,, g\}$
y	{0,1}	$\{1, 2,, g\}$
Discriminant fun.	$f(\mathbf{x}) = \boldsymbol{\theta}^{\top} \mathbf{x}$	$f_k(\mathbf{x}) = \theta_k^{\top} \mathbf{x}, k = 1, 2,, g$
Discriminant fun.	$f(\mathbf{x}) = \boldsymbol{\theta}^{\top} \mathbf{x}$	$f_k(\mathbf{x}) = \boldsymbol{\theta}_k^{\top} \mathbf{x}, k = 1, 2,, g$ $f_k(\mathbf{x}) = \boldsymbol{\theta}_k^{\top} \mathbf{x}, k = 1, 2,, g$
Probabilities	$\pi(\mathbf{x}) = \frac{1}{4 + conf} \frac{1}{2 \cdot conf}$	$\pi_k(\mathbf{x}) = \frac{\exp(\theta_k^{\top}\mathbf{x})}{\sum_{k=1}^{p} e^{-\frac{k}{2}\mathbf{x}}}$
Probabilities	$\pi(\mathbf{x}) = \frac{1}{1 + \exp(-\theta^{\top}\mathbf{x})}$ $\pi(\mathbf{x}) = \frac{1}{1 + \exp(-\theta^{\top}\mathbf{x})}$	$\pi_k(\mathbf{x}) = \frac{\exp(\theta_k^\top \mathbf{x})}{\sum_{j=1}^q \exp(\theta_j^\top \mathbf{x})}$ $\pi_k(\mathbf{x}) = \frac{\sum_{j=1}^q \exp(\theta_j^\top \mathbf{x})}{\sum_{j=1}^q \exp(\theta_j^\top \mathbf{x})}$
$L(y, \pi(\mathbf{x}))$	Bernoulli / logarithmic loss	Multiclass logarithmic loss
$L(y,\pi(\mathbf{x}))$	$-y \log(\pi(\mathbf{x})) = (19a/y) \log(18 - \pi(\mathbf{x}))$	$-l\sum_{k=1}^{g} [y \operatorname{leg}_{k}] \operatorname{log}_{k}(\pi_{k}(\mathbf{x}))$ $-\sum_{k=1}^{g} [y = k] \operatorname{log}_{k}(\pi_{k}(\mathbf{x}))$
	$-y \log (\pi(\mathbf{x})) - (1-y) \log (1-\pi(\mathbf{x}))$	$-\sum_{k=1}^{n} y = k \log (\pi_k(\mathbf{x}))$

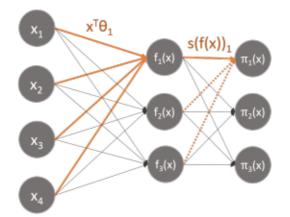
LOGISTIC VS. SOFTMAX REGRESSION

We can schematically depict softmax regression as follows:



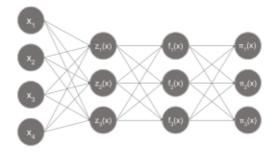
LOGISTIC VS. SOFTMAX REGRESSION

We can schematically depict softmax regression as follows:



GENERALIZING SOFTMAX REGRESSION /2

For example for a **neural network** (note that softmax regression is also a neural network with no hidden layers):



Remark: For more details about neural networks please refer to the lecture **Deep Learning**.