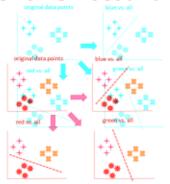
Introduction to Machine Learning

Multiclass Classification-One

One-vs-Rest and One-vs-One



Learning goals

Reduce a multiclass problem to

Learning goals mode agnostic way

- Reduce a multiclass problem to multiple binary problems in a
- model-agnostic way
- Know one-vs-rest reduction
- Know one-vs-one reduction

CODEBOOKS

How binary problems are generated can be defined by a codebook.

Example:

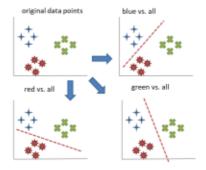
Class	$f_1(\mathbf{x})$	$f_2(\mathbf{x})$	$f_3(\mathbf{x})$
1	1	-1	-1
2	-1	1	1
3	0	1	-1

- The k-th column defines how classes of all observations are encoded in the binary subproblem / for binary classifier f_k(x).
- Entry (m, i) takes values $\in \{-1, 0, +1\}$
 - if 0, observations of class $y^{(i)} = m$ are ignored.
 - if 1, observations of class $y^{(i)} = m$ are encoded as 1.
 - if -1, observations of class $y^{(i)} = m$ are encoded as -1.

ONE-VS-REST

Create g binary subproblems, where in each the k-th original class is encoded as +1, and all other classes (the **rest**) as -1.

Class	$f_1(\mathbf{x})$	$f_2(\mathbf{x})$	f3(x)
1	1	-1	-1
2	-1	1	-1
3	-1	-1	1



ONE-VS-REST /2

Making decisions means applying all classifiers to a sample x ∈ X
and predicting the label k for which the corresponding classifier
reports the highest confidence:

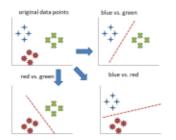
$$\hat{y} = \operatorname{arg\,max}_{k \in \{1,2,\ldots,g\}} \hat{f}_k(\mathbf{x}).$$

Obtaining calibrated posterior probabilities is not completely trivial, we could fit a second-stage, multinomial logistic regression model on our output scores, so with inputs (\$\hat{f}_1(\mathbf{x}^{(i)}), ..., \hat{f}_g(\mathbf{x}^{(i)})\$) and outputs \$y^{(i)}\$ as training data.

ONE-VS-ONE

We create $\frac{g(g-1)}{2}$ binary sub-problems, where each $\mathcal{D}_{k,\tilde{k}}\subset\mathcal{D}$ only considers observations from a class-pair $y^{(i)}\in\{k,\tilde{k}\}$, other observations are omitted.

Class	$f_1(\mathbf{x})$	$f_2(\mathbf{x})$	$f_3(\mathbf{x})$
1	1	-1	0
2	-1	0	1
3	0	1	-1



ONE-VS-ONE /2

- Label prediction is done via majority voting. We predict the label of a new x with all classifiers and select the class that occurred most often.
- Pairwise coupling (see Hastie, T. and Tibshirani, R. (1998).
 Classification by Pairwise Coupling) is a heuristic to transform scores obtained by a one-vs-one reduction to probabilities.

COMPARISON ONE-VS-ONE AND ONE-VS-REST /2

We see that the computational effort for one-vs-one is much higher than for one-vs-rest, but it does not scale proportionally to the (quadratic) number of trained classifiers.

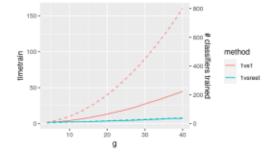


Figure: The number of classes vs. the training time (solid lines, left axis) and number of learners (dashed lines, right axis) for each of the two approaches.

