TRAINING A GP VIA MAXIMUM LIKELIHOOD

Let us assume

y=1f(x)+¢ e~N (0,02),
where f(x) ~ GP (0, k (x, x'|8)).

Observing y ~ N (0, K + o?1), the marginal log-likelihood (or
evidence) is

,. ,. 1
logp(y | X.8) = log (2rr)‘”"2Ky“"zexp(—EyTK;‘y)]
= ke Liogik, - Diog2
= —5¥'K;'y - ;log|Ky| - Slog2n.

with K, :== K + o”l and 6 denoting the hyperparameters (the
parameters of the covariance function).
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TRAINING A GP VIA MAXIMUM LIKELIHOOD /2

The three terms of the marginal likelihood have interpretable roles,
considering that the model becomes less flexible as the length-scale
increases:
® the data fit —3y"K, "y, which tends to decrease if the length
scale increases
® the complexity penalty —3 log |K,, . which depends on the
covariance function only and which increases with the
length-scale, because the model gets less complex with growing
length-scale

@ anormalization constant — 3 log 27
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TRAINING A GP: EXAMPLE

To visualize this, we consider a zero-mean Gaussian process with
squared exponential kernel

1
k(x.x') = ——x=x|?) .,
(x) = exp (5~ x)

@ Recall, the model is smoother and less complex for higher
length-scale /.
@ We show how the
o datafit —3y'K,y,
» the complexity penalty —3 log |K, . and
e the overall value of the marginal likelihood log p(y | X, 6)

behave for increasing value of £.
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m TRAINING A GP: EXAMPLE /2

vaue

= Theleftplot shows how values of the data fit — 1y” K, 'y, the complexity penalty
ll - ;log| K,/ (high value means less penalization) and the overall marginal likelihood
log p(y | X.0) behave for increasing values of £.
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m TRAINING A GP: EXAMPLE /3

vaue

— Ft — Pondty — Loglikeihcad

The left plot shows how values of the data fit — %yTK,. 'y, the complexity penalty
— 1 log| K| ((high value means less penalization) and the overall marginal likelihood
log p(y | X.0) behave for increasing values of £.

A small £ results in a good fit, but a high complexity penalty (low —31 log|K,|).

]
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m TRAINING A GP: EXAMPLE /4

vaue

— Ft — Pondty — Loglikeihcad

The left plot shows how values of the data fit — %yTK,. 'y, the complexity penalty
— 1 log| K| ((high value means less penalization) and the overall marginal likelihood
log p(y | X.0) behave for increasing values of £.

A large ¢ results in a poor fit.

]
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m TRAINING A GP: EXAMPLE /5

vaue

— Ft — Pondty — Loglikeihcad

The left plot shows how values of the data fit — %yTK,. 'y, the complexity penalty
— 1 log| K| ((high value means less penalization) and the overall marginal likelihood
log p(y | X.0) behave for increasing values of £.

The maximizer of the log-likelihood, £ = 0.5, balances complexity and fit.

]
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TRAINING A GP VIA MAXIMUM LIKELIHOOD

To set the hyperparameters by maximizing the marginal likelihood, we
seek the partial derivatives w.rt. the hyperparameters

B 1 74 1 n
09)( Y K,y — s log Kyl 21052»-)

1 - 1 OK 1 1 10K
- Lk Ekoy (kB
2y * a5 Y 2'( oo)

d
55 o8Pl | X.0)

. 1 1 T L 1")_K.
= 2tr((K yy K K )‘,)0’)

: T —139K g1 a _ —19K
using 57K~' = ~K 52K and 45 log |K| =tr (K~ '55).
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TRAINING A GP VIA MAXIMUM LIKELIHOOD /2

The complexity and the runtime of training a Gaussian process is
dominated by the computational task of inverting K - or let's rather
say for decomposing it.

@ Standard methods require O(n?) time (!) for this.

Once K~ - or rather the decomposition -is known, the
computation of the partial derivatives requires only O(n?) time per
hyperparameter.

Thus, the computational overhead of computing derivatives is
small, so using a gradient based optimizer is advantageous.
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m TRAINING A GP VIA MAXIMUM LIKELIHOOD /3

Workarounds to make GP estimation feasible for big data include: O O x
@ using kernels that yield sparse K: cheaper to invert.
@ subsampling the data to estimate #: O(m?) for subset of size m. X O
@ combining estimates on different subsets of size m:
Bayesian committee, O(nm?). X X

® using low-rank approximations of K by using only a representative
subset (“inducing points”) of mtraining data X:
Nystrom approximation K ~ K. K ./K .
O(nmk + m?) for a rank-k-approximate inverse of K ..

@ exploiting structure in K induced by the kernel: exact solutions but
complicated maths, not applicable for all kernels.

.. this is still an active area of research.
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