WEIGHT-SPACE VIEW

@ Until now we considered a hypothesis space H of parameterized
functions f(x | 8) (in particular, the space of linear functions).

@ Using Bayesian inference, we derived distributions for 6 after
having observed data D.

® Prior believes about the parameter are expressed via a prior
distribution g(#), which is updated according to Bayes' rule

likelihood pnor
(yX.6) q(6)
PLY X,
OXy) = ————.
grny (6%.¥) py|X)
posterior e
marginal
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FUNCTION-SPACE VIEW

Let us change our point of view:

@ Instead of “searching” for a parameter 6 in the parameter space,
we directly search in a space of “allowed" functions H. X O

@ We still use Bayesian inference, but instead specifying a prior
distribution over a parameter, we specify a prior distribution over X x
functions and update it according to the data points we have
observed.
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m FUNCTION-SPACE VIEW /2

O 0X

Intuitively, imagine we could draw a huge number of functions from

some prior distribution over functions (*).

Functions drawn from a Gaussian process prior

X X

X

1*) We will see in a minute how distributions over functions can be specified.
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FUNCTION-SPACE VIEW /3

After observing some data points, we are only allowed to sample those O O x
functions, that are consistent with the data.

Posterior process after 1 observation x O

X X
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FUNCTION-SPACE VIEW /4

After observing some data points, we are only allowed to sample those
functions, that are consistent with the data.

Posterior process after 2 observations
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FUNCTION-SPACE VIEW /5

After observing some data points, we are only allowed to sample those O O x
functions, that are consistent with the data.

Posterior process after 3 observations x o

X X
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FUNCTION-SPACE VIEW /6

As we observe more and more data points, the variety of functions

consistent with the data shrinks.
Posterior process after 4 observations
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FUNCTION-SPACE VIEW /7

Inutitively, there is something like “mean” and a ‘variance” of a

distribution over functions.
Posterior process after 4 observations
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WEIGHT-SPACE VS. FUNCTION-SPACE VIEW

Weight-Space View Function-Space View

O
Parameterize functions x O

Example: f(x| 8) = 6 x

Define distributions on @ Define distributions on f

Inference in parameter space © Inference in function space ‘H

Next, we will see how we can define distributions over functions
mathematically.
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Distributions on Functions
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DISCRETE FUNCTIONS

For simplicity, let us consider functions with finite domains first.

Let X = {x(") ... x(")} be a finite set of elements and A the set of all
functions from &' — R.

Since the domain of any h(.) € H has only n elements, we can
represent the function h(.) compactly as a n-dimensional vector

h=[n(xV).....n(x")].

Irroduction %o Machine Leaning - 11 /35
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DISCRETE FUNCTIONS

Example 1: Let us consider h: A — )V where the input space consists
of two points X' = {0,1}.

Examples for functions that live in this space:

h(x)
n

-1+

24
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DISCRETE FUNCTIONS

Example 2: Let us consider h: A — )V where the input space consists
of five points A = {0,0.25,0.5,0.75,1}.

Examples for functions that live in this space:

h(x)

-14 o

24
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DISCRETE FUNCTIONS
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DISCRETE FUNCTIONS

Example 3: Let us consider h: A — )V where the input space consists
of ten points.

Examples for functions that live in this space:

h(x)

24
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DISCRETE FUNCTIONS

Example 3: Let us consider h: A — )V where the input space consists
of ten points.

Examples for functions that live in this space:

h(x)
]

-14 o 8]

24
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DISCRETE FUNCTIONS

Example 3: Let us consider h: A — )V where the input space consists
of ten points.

Examples for functions that live in this space:

h(x)
|

-1~

24
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DISTRIBUTIONS ON DISCRETE FUNCTIONS

One natural way to specify a probability function on discrete function
h € H is to use the vector representation

h=[n(x").n(x?) .0 (x)]

of the function.

Let us see has a ndimensional random variable. We will further
assume the following normal distribution:

h~N(m.K).

Note: For now, we set m = 0 and take the covariance matrix K as
given. We will see later how they are chosen / estimated.
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DISCRETE FUNCTIONS

Example 1 (continued): Let h: A — ) be afunction that is defined
on two points A'. We sample functions by sampling from a
two-dimensional normal variable

h = [h(1), h(2)] ~ N (m, K)

Sample Function 1,n =2 Density of a 2-D Gaussian

h{x)

1 < 1 0 1

X hy

1 0.
In this example, m = (0,0) and K = (o 5 015>'
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DISCRETE FUNCTIONS

Example 1 (continued): Let h: A — ) be afunction that is defined
on two points A'. We sample functions by sampling from a
two-dimensional normal variable

h = [h(1), h(2)] ~ N (m, K)

Sample Function 2, n =2 Density of a 2-D Gaussian

h{x)
-
h,

1 2 1 0 1

X hy

1 0.
In this example, m = (0,0) and K = (o 5 015>'
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DISCRETE FUNCTIONS

Example 1 (continued): Let h: A — ) be afunction that is defined
on two points A'. We sample functions by sampling from a
two-dimensional normal variable

h = [h(1), h(2)] ~ N (m, K)

Sample Function3,n=2 Density of a 2-D Gaussian

h{x)

1 < 1 0 1

X hy

1 0.
In this example, m = (0,0) and K = (o 5 015>'
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DISCRETE FUNCTIONS

Example 2 (continued): Let us consider h: A’ — ) where the input O O x
space consists of five points. We sample functions by sampling from a
five-dimensional normal variable X O
h = [h(1),h(2), h(3), h(4), h(5)] ~ N'(m,K) X X
Sample Functon 1,n=5 Covariance Matrix

value

10
09
os
or

h{x)
L
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DISCRETE FUNCTIONS

Example 2 (continued): Let us consider h: A’ — ) where the input O O x

space consists of five points. We sample functions by sampling from a

five-dimensional normal variable X O
h = [h(1),h(2), h(3), h(4), h(5)] ~ N'(m,K) X X
Sample Function3,n=5 Covariance Matrix

value

10
09
0s
07

h{x)
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DISCRETE FUNCTIONS

Example 3 (continued): Let us consider h: A’ — ) where the input
space consists of ten points. We sample functions by sampling from

ten-dimensional normal variable
h=[h(1),h(2),..., h(10)] ~ N'(m,K)

Sample Function 1,n =10 Covariance Matrix

h{x)
-
L
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DISCRETE FUNCTIONS

Example 3 (continued): Let us consider h: A’ — ) where the input
space consists of ten points. We sample functions by sampling from

ten-dimensional normal variable
h=[h(1),h(2),..., h(10)] ~ N'(m,K)

Sample Function 2, n = 10 Covariance Matrix

L] -
loa

06

04

h{x)
a
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DISCRETE FUNCTIONS

Example 3 (continued): Let us consider h: A’ — ) where the input
space consists of ten points. We sample functions by sampling from

ten-dimensional normal variable

h = [h(1),h(2),....h(10)] ~ N'(m.K)

Sample Function3, n =10 Covariance Matrix

h{x)
o

| |
L

value
10

loa
06
04
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ROLE OF THE COVARIANCE FUNCTION

Note that the covariance controls the “shape” of the drawn function.

Consider two extreme cases where function values are

1 09 ... 09
099 1 ... 099
a) strongly correlated: K = .
099 09 . 0.99
099 ... 099 1

b) uncorrelated: K = |

Sample Functionfor a),.n = 50 Sample FuncSonforb),n = 50

hix)
hix)
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m ROLE OF THE COVARIANCE FUNCTION /2

@ “Meaningful” functions (on a numeric space A’) may be
characterized by a spatial property:

If two points x'”), xU) are close in X-space, their function X O
values f(x(), f(x(/)) should be close in J-space.

In other words: If they are close in A'-space, their functions values
should be correlated!

@ We can enforce that by choosing a covariance function with

i K; high, if x', x¥) close.
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m ROLE OF THE COVARIANCE FUNCTION /3

@ We can compute the entries of the covariance matrix by a function
that is based on the distance between x{/), xU)_ for example:

N N 2
¢) Spatial correlation: K, = k(x"),x!)) = exp (_g .x“ - xW. )

Sample Functionforb) K=1,n =50 Sample Funcfon for ¢}, n= 50

hix)
hix)

x x

Note: k(-. -) is known as the covariance function or kernel. It will be studied in more
detail later on.
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Gaussian Processes
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FROM DISCRETE TO CONTINUOUS FUNCTIONS

@ We defined distributions on functions with discrete domain by
defining a Gaussian on the vector of the respective function values

h = [A(x")), h(x@), ... h(x(M)] ~ N (m, K)

@ We can do this for n — oc (as “granular" as we want)
n=10 n«5 n = 200

~ ] A

hix)
n

hix)
hix)
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FROM DISCRETE TO CONTINUOUS FUNCTIONS

@ No matter how large nis, we are still considering a function over a
discrete domain.

@ How can we extend our definition to functions with continuous X O
domain X ¢ R?

__L
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GAUSSIAN PROCESSES: INTUITION

@ Intuitively, a function f drawn from Gaussian process can be
understood as an “infinite" long Gaussian random vector.

@ ltis unclear how to handle an “infinite" long Gaussian random
vector!

Froduction %o Machine Lexrning -~ 25 /3%
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GAUSSIAN PROCESSES: INTUITION

@ Thus, it is required that for any finite set of inputs
{x( . x("} C X, the vector f has a Gaussian distribution

f= [f (x(‘)) ..... f(x("))] ~N(m,K),

with m and K being calculated by a mean function m(.) /
covariance function k(., .).
@ This property is called Marginalization Property.
Sample Function,n=5

, . f(z)
= ~N(X)
[}

hix}
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@ Thus, it is required that for any finite set of inputs
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f= [f (x(‘)) ..... f(x("))] ~N(m,K),
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@ This property is called Marginalization Property.
Sample Function, n =10
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GAUSSIAN PROCESSES: INTUITION

@ Thus, it is required that for any finite set of inputs
{x( . x("} C X, the vector f has a Gaussian distribution

f= [f (x(‘)) ..... f(x("))] ~N(m,K),

with m and K being calculated by a mean function m(.) /

covariance function k(., .).
@ This property is called Marginalization Property.

Sample Function, n =50

h{x)
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GAUSSIAN PROCESSES

This intuitive explanation is formally defined as follows:

A function f(x) is generated by a GP GP (m(x), k (x, X)) if for any
finite set of inputs {x("), ... x("} the associated vector of function

values f = (f(x(1)), ..., f(x(")) has a Gaussian distribution

f— [f (x)....1 (x("))] ~ N (m,K),

with

m e (me), K (1 (c08)),,

where m(x) is called mean function and k(x, x") is called covariance
function.
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m GAUSSIAN PROCESSES /2

A GP is thus completely specified by its mean and covariance function X O

m(x) = E[f(x)] X X

k(x.x') = E|(f(x) - E[f(x)]) ({(x") — E[f(X)])

Note: For now, we assume m(x) = 0. This is not necessarily a drastic
limitation - thus it is common to consider GPs with a zero mean
function.
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SAMPLING FROM A GAUSSIAN PROCESS PRIOR

We can draw functions from a Gaussian process prior. Let us consider
f(x) ~ GP (0, k(x,x")) with the squared exponential covariance
function (*)

1
k(x,x") = exp (_W”x - x’||2> , =1,

This specifies the Gaussian process completely.

1*) We will talk later about different choices of covariance functions.
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SAMPLING FROM A GAUSSIAN PROCESS PRIOR

/2

Towisualize.a,sample function; we
@ choose @ high humber a(equidistant) peints {x"), .. ., x(")}
® tompute the correspandingccovariande matrix

K= (& (x| .x“))}u by, plugging in all pairs x(), xU)
o sample from.a Gaussian.f «« A (0,K).

We draw 10 times from the Gaussian, to get 10 different samples.

—— e

———

I

| |
o
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I SAMPLING FROM A GAUSSIAN PROCESS PRIOR
B /3

O0X
]l Since we specified the mean function to be zero m(x) = 0, the drawn
ll functions have zero mean. x O
]

Gaussian Processes as Indexed Family

X X
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GAUSSIAN PROCESSES AS AN INDEXED FAMILY

A Gaussian process is a special case of a stochastic process which is
defined as a collection of random variables indexed by some index set
(also called an indexed family). What does it mean?

Gaussian Processes as Indexed Fam|I
An indexed family is a mathematical function (or “rule") to map ifdices
t € T to objects in §.

Definition

A family of elements in & indexed by 7 (indexed family) is a
surjective function
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GAUSSIAN PROCESSES AS AN INDEXED FAMILY

AGaussianprocesslis:aspecial caserofiasstochastic process which is

defined as a collection of random variablesgndexed by some index set
(also called an indexed family). What does it mean? O

Amindexed-family:is aimathematical function (or “rule”) to map indices
t € Thoobjects in Su} and

Definition

A family of elements in S indexed by T findexed family) is a

sug’ective function
@ Infinite sequences
T — N and (s spl = 8§

J

)

t — s =s(t)

__ [
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INDEXED FAMILY

I Somesimpleexamplesdoriindexed families are: O O x
T S
List x O
o finite sequences(lists):
RREq, EClor, n} and o x x
. N
(sf)(»j:T cR 1 2 3 n
T S
@ infinite sequences: =T
T=Nand(s), ;€ R
N 5
1 2
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INDEXED FAMILY /2

Bui theindexed set S can be something more W“P“Falem for example
functions.or.random variables (BV). 1 valies «

Hg-“!!lw"‘. S

8 TS Vi g 1O O S
h‘Mlndexedfamllylsé"‘”m ion (which comes witl ~Ht¢
random vector. ) :

o T={1,..., m}, Y{s are Lze S o
RVs: Indexed family is a T S
stochastic process in - Swchasti process
discrete time "N B

v

o T =172 .Y,'s are'RVs:
Indexed family is a
2D-random walk.
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INDEXED FAMILY

@ A Gaussian process is also an indexed family, where the random O O X
variables f(x) are indexed by the input values x € X'.

® Their special feature: Any indexed (finite) random vector has a X O
multivariate Gaussian distribution (which comes with all the nice
properties of Gaussianity!). X X

T S

_— ' (f(.r) ) ANYEE)

/ e — . I('B‘l
- o - -
T 0F1
xIr

Visualization for a one-dimensional A’.
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