Introduction to Machine Learning

Curse of Dimensionality
] Curse of Dimensionality

Learning goals
@ Understand that our intuition about
A geometry fails in high-dimensional
spaces
@ Understand the effects of the curse of
dimensionality



CURSE OF DIMENSIONALITY: EXAMPLE >
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Based on the frequency of exclamation marks; we train a very simple
classifier (a decision stump with split point x = 0.25):

® We divide the input space into 2 equally sized regions.
8 Ihthe second regioh [0:25; 0.5]; 7 otit of 10 are spam:

® Given that at least 0.25% of all letters are exclamation marks; an
efnial is sparm with a probability of & = 0.7.
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m CURSE OF DIMENSIONALITY: EXAMPLE /3

Let us feed more information into our classifier. We include a feature
that contains the length of the longest sequence of capital letters.
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@ Inthe 1D case we had 20 observations.across 2.regions.
@ The same number is now spread across 4 regions.
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m CURSE OF DIMENSIONALITY: EXAMPLE /4

Let us further increase the dimensionality to 3 by using the frequency of
the word “your" in an email.
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CURSE OF DIMENSIONALITY: EXAMPLE /5

@ When adding a third dimension, the same number of observations
is spread across 8 regions.

@ In 4 dimensions the data points are spread across 16 cells, in 5
dimensions across 32 cells and so on ...

@ As dimensionality increases, the data become sparse; some of
the cells become empty.

@ There might be too few data in each of the blocks to understand
the distribution of the data and to model it.
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Bishop, Pattern Recognition and Machine Leaming, 2006
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THE HIGH-DIMENSIONAL CUBE /2

# = 2 1__.

-— A
o ¢10

@ So: covering 10% of total velume ih a cell reguires eells with
almost 50% of the entire range ih 3 dimensiohs; 80% ih 10
dimehsiohs:
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m THE HIGH-DIMENSIONAL SPHERE /2

Consider a 20-dimensional sphere. Nearly all of the volume lies in its
outer shell of thickness 0.2:
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HYPHERSPHERE WITHIN HYPERCUBE

Consider a p-dimensional hypersphere of radius r and volume Sy(r)
inscribed in a p-dimensional hypercube with sides of length 2r and
volume Cp(r). Then it holds that
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ile:, as:the-dimensionality increases; most of the volume: of the
hypercube can be found in its corners.

Mohammed J. Zaki, Wagner Meira, Jr., Data Mining and Analysis: Fundamental Concepts and
Algorithms, 2014
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m HYPHERSPHERE WITHIN HYPERCUBE /2

Consider a 10-dimensional sphere inscribed in a 10-dimensional cube.

Nearly all of the volume lies in the corners of the cube:
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Note: For r > 0, the volume fraction =— isindependent of r.

o rroduction %o Machine Lexrning - 13 /18



GAUSSIANS IN HIGH DIMENSIONS

A further manifestation of the curse of dimensionality appears if we
consider a standard Gaussian Np(0. /) in p dimensions.

@ After transforming from Cartesian to polar coordinates and
integrating out the directional variables, we obtain an expression
for the density p(r) as a function of the radius r (i.e., the point's
distance from the origin), s.t.

(r) = Sprf™? o r?

A= (2mo2)p/2 Pl 2:2)
where S isthe isurface area of the prdimensional unit
hypersphere.

@ Thus p(r)dr is the approximate probability mass inside a thin shell
of thickness &r located at radius r.
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m GAUSSIANS IN HIGH DIMENSIONS /2

@ To verify this functional relationship empirically, we draw 10* points O O x
from the p-dimensional standard normal distribution and plot p(r)
over the histogram of the points' distances to the origin: x O
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® We cah see that for large p the probability mass of the Gaussian is
coheentrated in a faitly thih “shell” rather far away from the origih.
This may seem eouhterntuitive; but:
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GAUSSIANS IN HIGH DIMENSIONS /3

@ For the probability mass of a hyperspherical shell it follows that O 0O X
r4d
/ p(?)d? = / f,(%)dX, X O
Jr-% -G <xls < e+ 5
where f,(x) Is the density of the p-dimensiohal standard hormal x X

distribution and p(r) the associated radial density.
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Example-2D normal cistribution

@ While f, becomes smaller with increasing r, the region of the
integral -the hyperspherical shell- becomes bigger.
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INTERMEDIATE REMARKS

However, we can find effective techniques applicable to
high-dimensional spaces if we exploit these properties of real data:
@ Often the data is restricted to a manifold of a lower dimension.
(Or at least the directions in the feature space over which
significant changes in the target variables occur may be confined.)

@ At least locally small changes in the input variables usually will
result in small changes in the target variables.

o rroduction %o Machine Lexrning ~ 18/18



