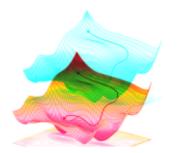
Introduction to Machine Learning

Advanced Risk Minimization

Risk Minimizers



Learning goals

Know the concepts of the Bayes

Learning goals minimizer, population minimizer)

- Bayes optimal model (also: risk minimizer, population minimizer)
- Bayes risk
- Bayes regret, estimation and Bayes regret, estimation and approximation error
- Optimal constant model
- Consistent learners

EMPIRICAL RISK MINIMIZATION

Very often, in ML, we minimize the empirical risk

$$\mathcal{R}_{emp}(f) = \sum_{i=1}^{n} L\left(y_{(i)}^{(i)}, f\left(\mathbf{x}_{(i)}^{(i)}\right)\right)$$

$$\mathcal{R}_{emp}(f) = \sum_{i=1}^{n} L\left(y_{(i)}^{(i)}, f\left(\mathbf{x}_{(i)}^{(i)}\right)\right)$$

- $\bullet f_{h, i} X \rightarrow \mathbb{R}^g$ f is a model from hypothesis space \mathcal{H} ; maps a feature vector to output score; sometimes or often we omit ${\cal H}$ in the index

- numerically encoded element of \mathcal{Y} and \mathcal{H} is the hypothesis space, We assume that $(\mathbf{x}, y) \sim P_{xy}$ and $(\mathbf{x}^{(i)}, y^{(i)}) \stackrel{\cup d}{\longrightarrow} P_{xy}$ is the distribution of the data generating process (DGP) dissimilarity of the model prediction and the true target.

Let's define (and minimize) loss in expectation, the theoretical risk:

• and we assume that $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \sim \mathbb{P}_{xy}$ where \mathbb{P}_{xy} is the

distribution of the data generating process (DGP).
$$\mathcal{R}(f) := \mathbb{E}_{xy}[L(y, f(\mathbf{x}))] = \int L(y, f(\mathbf{x})) dP_{xy}$$

What is the theoretical justification for this procedure?

TWO SHORT EXAMPLES

Regression with linear model:

- Model: $f(\mathbf{x}) = \boldsymbol{\theta}^{\top} \mathbf{x} + \theta_0$
- Squared loss: $E(\vec{y}, t) = \int L(y, f(\mathbf{x})) d\mathbb{P}_{xy}$.

for a certain hypothesis $f(\mathbf{x}) \in \mathcal{H}$ and a loss $L(y, f(\mathbf{x}))$.

 $\mathcal{H}_{\text{lin}} = \left\{ \begin{matrix} \text{make this conject with a subscript if needed and omit it in other cases.} \\ \mathcal{H}_{\text{lin}} = \left\{ \begin{matrix} \mathbf{x} \mapsto \boldsymbol{\theta} & \mathbf{x} + \boldsymbol{\theta}_0 : \boldsymbol{\theta} \in \mathbb{R}^d, \theta_0 \in \mathbb{R} \end{matrix} \right\} \end{matrix}$

Let us assume we are in an "ideal world":

Binary classification with shallow MLPted. We can choose any

- Model: $f(\mathbf{x}) = \pi(\mathbf{x}) = \sigma(\mathbf{w}_2^{\top} \text{ReLU}(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + b_2)$
- Binary cross-entropy toss:optimizer; the risk minimization can
 Δ(γ)π) = so(γ log(π) φl) (1αμdγ) log(1tly. π))
- Hypothesis space:

$$\begin{array}{l} \text{How should} \ \mathcal{H}_{\text{MLP}} = \{ \mathbf{\overset{hose}{x}} \mapsto \sigma(\mathbf{\overset{hose}{w}_2} \text{ReLU}(\mathbf{W}_1\mathbf{x} + \mathbf{b}_1) + b_2) : \mathbf{W}_1 \in \mathbb{R}^{h \times d}, \mathbf{b}_1 \in \mathbb{R}^h, \mathbf{w}_2 \in \mathbb{R}^h, b_2 \in \mathbb{R} \} \end{array}$$

OPTIMAL CONSTANTS FOR A LOSS

- The Let's assume some RVs2 all prorayable) functions is called the risk minimizer, population minimizer or Bayes optimal model.

 2 not RV y, because we want to fiddle with its distribution
 - Assume z has distribution Q, so z ∼ Q
 - We can now consider $\arg \min_{\overline{c}} \mathbb{E}_{\Sigma \mathcal{B}} \mathfrak{g}[L(z,c)]_{t^g} \mathbb{E}_{xy}[L(y,f(\mathbf{x}))]$ so the score-constant which loss-minimally approximates $\mathbf{z} = \arg \min_{f:\mathcal{X} \to \mathbb{R}^g} \int_{\mathbb{R}^g} L(y,f(\mathbf{x})) d\mathbb{P}_{xy}$.

We will consider 3 cases for Q

The QstitPy simply our labels and their marginal distribution in Pxy

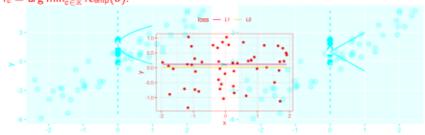
- $Q = P_{y|x=x}$, conditional label distribution at point $x = \tilde{x}$
- $Q = P_n$, the empirical product distribution for data y_1, \ldots, y_n $\mathcal{R}_L^* = \inf_{f: \mathcal{X} \to \mathbb{R}^g} \mathcal{R}_L(f)$

If we can solve $\arg\min_c \mathbb{E}_{z \sim Q}[L(z,c)]$ for any Q, we will get multiple useful results!

OPTIMAL CONSTANT MODELCTIONS

- To ●leWe would like a loss optimal constant baseling predictor of total expectation
 - A "featureless" ML model, which always predicts the same value
 - Can use it as baseline in experiments, if we don't beat this with more complex
 - modelathat/model:is/useless we want (unrestricted hypothesis space,
 - Will also be useful as component in algorithms and derivations
 - Hence, for a fixed value x ∈ X' we can select any value c we want
 to predict = Sarginin Ext | L(ψ,c) | einarginin Ext | L(ψ,c) |

and $f(\mathbf{x}) = \theta = c$ that optimizes the empirical risk $\mathcal{R}_{emp}^{c \in \mathbb{R}}(\theta)$ is denoted as as $\hat{t}_c = \ker \mathbb{R}^{|\mathcal{X}|} \mathcal{R}_{emp}^{|\mathcal{X}|}(\theta)$.



OPTIMAL CONSTANT MODELAL RISK

- Let's start with the simplest case, L2 loss
 - lacktriangle And we want to find and obtimal constant model for ${\cal H}$ such that we can efficiently search over it.
 - In practice we (usually deing P(x,y,y) = P(x,y,y)) instead of $\mathcal{R}(f)$, we are optimizing the empirical risk $\arg \min \mathbb{E}[(z-c)^2] =$

$$\underset{\hat{f} = \text{ arg min}}{\operatorname{arg min}} \mathbf{E}[\mathbf{z}^2] - 2c\mathbf{E}[\mathbf{z}] + c^2 = \\ \hat{f} = \underset{f \in \mathcal{H}}{\operatorname{arg min}} \sum_{f \in \mathcal{H}} \sum_{i=1}^{L} L\left(\mathbf{y}^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)$$

Note Using Q = Px, this means that given we know the label empirical risk distribution, the best constant is care [y] verfitting!):

• If we only have data $y_1, \ldots y_n$

arg min
$$\mathbb{E}_{z \sim P_n}[(z - c)^2] = \mathbb{E}_{z \sim P_n}[z] = \frac{1}{n} \sum_{j=1}^n y^{(j)} = \bar{y}$$

 $\overline{\mathcal{R}}_{emp}(f) = -\sum_{j=1}^n L\left(y^{(j)}, f\left(\mathbf{x}^{(j)}\right)\right)^{\frac{n}{2}-1} \mathcal{R}(f).$

And we want to find and optimal constant model for

RISKIMINIMIZERD APPROXIMATION ERROR

Goal of learning: Train a model \hat{f} for which the true risk $\mathcal{R}_L\left(\hat{f}\right)$ is below assume we are in an indeal world is, we want the Bayes regret

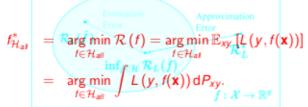
- The hypothesis space $\mathcal{H} = \mathcal{H}_{all}$ is unrestricted. We can choose any measurable $f: \mathcal{X} \to \mathbb{R}^q(f) \mathcal{R}^*_L$
- to eWe also assume an ideal optimizer; the risk minimization can always be solved perfectly and efficiently.

How should f be chosen?

$$\mathcal{R}_{L}\left(\hat{f}\right) - \mathcal{R}_{L}^{*} = \underbrace{\left[\mathcal{R}_{L}\left(\hat{f}\right) - \inf_{f \in \mathcal{H}} \mathcal{R}_{L}(f)\right]}_{\text{estimation error}} + \underbrace{\left[\inf_{f \in \mathcal{H}} \mathcal{R}_{L}(f) - \mathcal{R}_{L}^{*}\right]}_{\text{approximation error}}$$

RISK MINIMIZERD 2 APPROXIMATION ERROR / 2

The f with minimal risk across all (measurable) functions is called the risk minimizer, population minimizer or Bayes optimal model.



The resulting risk is called **Bayes risk**: $\mathcal{R}^* = \mathcal{R}(f^*_{\mathcal{H}_{all}})$

• $\mathcal{R}_L(\hat{f}) - \inf_{f \in \mathcal{H}} \mathcal{R}(f)$ is the **estimation error**. We fit \hat{f} via

Note that if we leave out the hypothesis space in the subscript it becomes clear from the context! do not find the optimal $f \in \mathcal{H}$.

Similarly, we define the risk minimizer over some $\mathcal{H} \subset \mathcal{H}_{all}$ as in $\mathcal{H}_{c} \in \mathcal{H}_{c}$ is the approximation error. We fleed to restrict to a hypothesis space \mathcal{H} which might not even contain the

Bayes optimal model**: =
$$\underset{t \in \mathcal{H}}{\operatorname{arg min}} \mathcal{R}(t)$$

OPTIMAL POINT-WISE PREDICTIONSIERS

To derive the risk minimizer to serve that by law of total expectation chensures $\mathcal{R}(r) = \mathcal{L}(y, r(\mathbf{x})) = \mathcal{L}(y, r(\mathbf{x})$

unlimited data.

• We can choose $f(\mathbf{x})$ as we want (unrestricted hypothesis space,

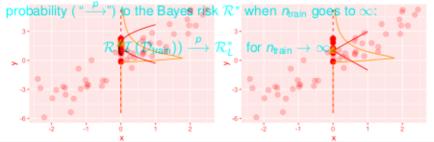
no assumed functional form)

Let \mathcal{I} be a learning algorithm that takes a training set.

• Hence, for a fixed value $\mathbf{x} \in \mathcal{X}$ we can select **any** value c we want

• Hence, for a fixed value $\mathbf{x} \in \mathcal{X}$ we can select **any** value \mathbf{c} we want to predict. So we construct the **point-wise optimizer**

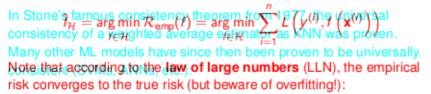
The learning metho $\ell^*(\tilde{\mathbf{X}})$ =argmin_Eq.(VerQ) \mathbf{X} = $\tilde{\mathbf{X}}$] ertain distribution = $\tilde{\mathbf{X}}$ the risk of the estimated models one of the estimated models of the estimated models of the estimated models.



THEORETICAL AND EMPIRICAL RISKERS /2

Eherisk-minimizer is mainly a theoretical declipation \mathbb{P}_{xy} . But since we us \bullet ally practice we need to restrict the hypothesis space! \mathcal{H} such that choose can efficiently search to verift ask.

• In practice we (usually) do not know P_{xy} . Instead of $\mathcal{R}(f)$, we are More optimizing the tempirical risk oncept of universal consistency: An algorithm is universally consistent if it is consistent for any distribution.



Note that universal consistency is obviously a desirable property however, (universal) consistency does not tell us anything about convergen $\bar{\mathcal{R}}_{\text{emp}}(f) = \frac{1}{n} \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right) \overset{n \to \infty}{\longrightarrow} \mathcal{R}(f).$

ESTIMATION AND APPROXIMATION ERROR

Goal of learning: inTrain a model $\hat{h}_{\mathcal{P}}$ for which the true risk $\mathcal{R}_{\mathsf{u}}(\hat{h}_{\mathcal{P}})$ tise close to the Bayes risk $\mathcal{R}_{\mathsf{u}}(\mathsf{u})$ the Bayes regret or excess risk pirical lower baseline solution.

The constant model is the model $f(\mathbf{x}) = \theta$ that optimizes the empirical risk $\mathcal{R}_{\text{emp}}(\theta)$. $\mathcal{R}\left(\tilde{\mathbf{f}}_{\mathcal{H}}\right) - \mathcal{R}^*$

to be as low as possible.

