Introduction to Machine Learning

Advanced Risk Minimization
Maximum Likelihood Estimation vs.
Empirical Risk Minimization

Distrioution of Reskluals Lear nlng goals

@ “Understand the connection between
maximum likelihood and risk
minimization

@ ‘llearn'thecorrespondence between a
Gaussian error distribution and the L2
loss



MAXIMUM LIKELIHOOD

Let's consider regression from a maximum likelihood perspective.
Assume:

ylx~p(y x8)

Common case: true underlying relationship fyye with additive noise:

fruelx) with Gaussian noise ~NQO.1)
0-

y - fﬁue(x) + €

where f,,, has params € and ¢ a RV that follows some distribution I?, ,
with E[¢] = 0. Also, assume ¢ L x.
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m MAXIMUM LIKELIHOOD /2

From a statistics / maximum-likelihood perspective, we assume (or we O
pretend) we know the underlying distribution p(y | x, 8).
7 @ Then,giveniiddata D = ((x(", y") .. (x() y(")) from P, X @)
the maximum-likelihood principle is to maximize the likelihood

Y .
co-flolmns) - M
i=1
or equivalently to minimize the negative log-likelihood

=S (00.0) . AR

i=1
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m MAXIMUM LIKELIHOOD /3

From an ML perspective we assume our hypothesis space corresponds O O x

to the space of the (parameterized) fie.
@ Simply define neg. log-likelihood as loss function X O
L(y.f(x|0)):= —logp(y|x.0) X X

@ Then, maximum-likelihood = ERM
n
Remp(6) = Z L (y(i)_ f (x(i) | 9))
i=1

@ NB: When we are only interested in the minimizer, we can ignore
multiplicative or additive constants.

@ We use x as “proportional up to multiplicative and additive
constants”
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GAUSSIAN ERRORS - L2-LOSS

Assume y = fiue(X) + ¢ with additive Gaussian errors, i.e.
e} ~ N(0,02). Then

¥ | %~ N (fre(x),0?)
The likelihood is then X X

£(6) = ]i[p(ym f(x(’)|0).az)
« [ (~a (-1 (x216))")

i=1
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@ GAUSSIAN ERRORS - L2-LOSS /2

Easy to see: minimizing neg. negative log-likelihood with Gaussian O O x
errors is the same as ERM with L2-loss:
—£(0) = —log(L(6)) X X

~ log (i]iexp (—# (1 (x 0))2))

x 3 (W0 -1 (x00))

i=1
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m GAUSSIAN ERRORS - L2-LOSS /3

® We simulate data y | x ~ A (fue(x). 1) with £ = 0.2 X O 0O X
@ Let's plot empirical errors as histogram, after fitting our model with [2-loss
® Q-Q-plot compares empirical residuals vs. theoretical quantiles of Gaussian x O

Digdbuion of Residusls Resduak vs. Quanties of Eror Dis¥ibution

reddiak x
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DISTRIBUTIONS AND LOSSES

e For every error distribution I, we can derive an equivalent loss
function, which leads to the same point estimator for the parameter
vector 8 as maximume-likelihood. Formally,

I o 0 € argmaxg £(9) = 6 < angming — log(L(#))

@ But: The other way around does not always work: We cannot
derive a corresponding pdf or error distribution for every loss
function - the Hinge loss is one prominent example, for which
some probabilistic interpretation is still possible however, see

| » Salich 1985 J
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m DISTRIBUTIONS AND LOSSES /2

When does the reverse direction hold?

@ If we can write the loss as L(y, f(x)) = L(y — f(x)) = L(r) for
r € I, then minimizing L(y — f(x)) is equivalent to maximizing a
conditional log-likelihood log(p(y — f(x|8)) if
o log(p(r)) is affine trafo of L (undoing the x):

log(p(r)) = a—bL(r), ac B,b>0

e pis a pdf (non-negative and integrates to one)

Thus, a loss L corresponds to MLE under some distribution if there
exist a € [£, b > 0 such that

/ exp(a— bL(r))dr = 1
R
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