Introduction to Machine Learning

| Advanced®Risk Minimization
I Brier Score

Learning goals

/ ‘ ® Kniow'the Brier score

. @ Derive the risk minimizer
- e @ Derive the optimal constant model



BRIER SCORE

Jl  The binary Brier score is defined on probabilities 7 [0, 1) and O 0O X
0-1-encoded labels y € {0, 1} and measures their squared distance
(L2 loss on probabilities). x O

Ligert) = (xiy)? X X

il As the Brier score is a proper scoring rule, it can be used for calibration.
‘ Note that is is not convex on probabilities anymore.
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BRIER SCORE: RISK MINIMIZER

The risk minimizer for the (binary) Brier score is

(%) = 7(x) &= Pyl} v =xx);

which means that the Brier score will reach its minimum if the prediction
equals the “true” probability of the outcome.

The risk minimizer for the multiclass Brier score is
7' (x) =P(y = k | x =x).

Proof: We only show the proof for the binary case. We need to
minimize

Ex [L(1,7(x)) - n(x) + L0, m(x)) - (1 — m(x))],
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m BRIER SCORE: RISK MINIMIZER /2

which we do point-wise for every x. We plug in the Brier score O 0O X
arg min mL(1()a(x)< LO()((+ n(x)) X O
= argmin m{e —(t)*n (%) & (161 (x) X X

arg min (e 2091} 1(x)%) = n(x)° + n(x)

argcmin (¢.—n(x))>

The expression is minimal if ¢ = n(x) = P(y =1 | x = x).
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BRIER SCORE: OPTIMAL CONSTANT MODEL

The optimal constant probability model w(x) = # w.r.t. the Brier score
for labels from ) = {0, 1} is:
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This is the fraction of class-1 observations in the observed data.
(This also directly follows from our L2 proof for regression).

Similarly, for the multiclass brier score the optimal constant is
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BRIER SCORE MINIMIZATION = GINI SPLITTING

When fitting a tree we minimize the risk within each node " by risk
minimization and predict the optimal constant. Another approach that is
common in literature is to minimize the average node impurity Imp(\").
Claim: Gini splitting Imp(\) = 329« (1 e ’) is equivalent to
the Brier score minimization.

Note that m} ' := -1 5= [y =]

(x.y)EN

Proof: We show that the risk related to a subset of observations A" C D fulfills

R(N) = npylmp(\).
where Imp is the Gini impurity and !\‘(.\') is calculated w.r.t. the (multiclass) Brier score

g

L(y.m(x)) = S (lr = k] = mu())°.
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BRIER SCORE MINIMIZATION = GINI SPLITTING

We further simplify the expression to
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