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PERSPECTIVES ON L2 REGULARIZATION
We already saw two interpretations of L2 regularization.

We know that it is equivalent to a constrained optimization problem:

θ̂ridge = argmin
θ

n∑
i=1

(
y (i) − θT x(i)

)2
+ λ∥θ∥2

2 = (XT X + λI)−1XT y

For some t depending on λ this is equivalent to:

θ̂ridge = argmin
θ

n∑
i=1

(
y (i) − θT x(i)

)2
s.t. ∥θ∥2

2 ≤ t

Bayesian interpretation of ridge regression: For additive Gaussian errors
N (0, σ2) and i.i.d. normal priors θj ∼ N (0, τ 2), the resulting MAP
estimate is θ̂ridge with λ = σ2

τ 2 :

θ̂MAP = argmax
θ

log[p(y|X,θ)p(θ)] = argmin
θ

n∑
i=1

(
y (i) − θT x(i)

)2
+
σ2

τ 2 ∥θ∥
2
2
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L2 AND ROW-AUGMENTATION

We can also recover the ridge estimator by performing least-squares on

a row-augmented data set: Let X̃ :=

(
X√
λIp

)
and ỹ :=

(
y
0p

)
.

With the augmented data, the unreg. least-squares solution θ̃ is:

θ̃ = argmin
θ

n+p∑
i=1

(
˜y (i) − θT x̃(i)

)2

= argmin
θ

n∑
i=1

(
y (i) − θT x(i)

)2
+

p∑
j=1

(
0 −

√
λθj

)2

= argmin
θ

n∑
i=1

(
y (i) − θT x(i)

)2
+ λ∥θ∥2

2

=⇒ θ̂ridge is the least-squares solution θ̃ but using X̃, ỹ instead of X, y!

This is a sometimes useful “recasting” or “rewriting” for ridge.
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L2 AND NOISY FEATURES
Now consider perturbed features x̃ (i) := x(i) + δ(i) where δ(i) iid∼ (0, λIp).
We assume no specifc distribution. Now minimize risk with L2 loss, we define it slightly
different than usual, as here our data x(i), y (i) are fixed, but we integrate over the
random permutations δ:

R(θ) := Eδ

[ n∑
i=1

(y (i) − θ⊤x̃(i))2
]
= Eδ

[ n∑
i=1

(y (i) − θ⊤(x(i) + δ(i)))2
] ∣∣∣ expand

R(θ) = Eδ

[ n∑
i=1

(
(y (i) − θ⊤x(i))2 − 2θ⊤δ(i)(y (i) − θ⊤x(i)) + θ⊤δ(i)δ(i)⊤θ

)]
By linearity of expectation, Eδ[δ

(i)] = 0p and Eδ[δ
(i)δ(i)⊤] = λIp, this is

R(θ) =
n∑

i=1

(
(y (i) − θ⊤x(i))2 − 2θ⊤Eδ[δ

(i)](y (i) − θ⊤x(i)) + θ⊤Eδ[δ
(i)δ(i)⊤]θ

)
=

n∑
i=1

(y (i) − θ⊤x(i))2 + λ∥θ∥2
2

=⇒ Ridge regression on unperturbed features x(i) turns out to be the same as
minimizing squared loss averaged over feature noise distribution!
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