Introduction to Machine Learning

Regularization
Perspectives on Ridge Regression
(Deep-Dive)

Learning goals

@ Interpretation of L2 regularization as
— row-augmentation
@ Interpretation of L2 regularization as
minimizing risk under feature noise
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PERSPECTIVES ON L2 REGULARIZATION

We already saw two interpretations of L2 regularization.

@ We know that it is equivalent to a constrained optimization problem:

n
N , A\ 2
Bige = argmin > (¥ = 07x) "+ A0IIE = (XX + M) "Xy
O —

For some t depending on A this is equivalent to:
éridge = arg mmZ( ’)) st [|0]3 <t

@ Bayesian interpretation of ridge regression: For additive Gaussian errors
N(0,0?) and i.i.d. normal priors 6; ~ N(0, 72), the resulting MAP
estimate is @ridge with A = ‘T’—z:

A n , N2 g2
Onmnp = arg(;naxlog[p(y|X,9)p(0)] = arggmin Z (y(') - GTX(I)) +;||0||§
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L2 AND ROW-AUGMENTATION

We can also recover the ridge estimator by performing least-squares on

- X .
a row-augmented data set: Let X := (\f)\l ) andy = (g )
P P

With the augmented data, the unreg. least-squares solution 8 is:

~ me ;2
0 = arg min ; (y(’) -0 x(’))
= argemini (y(’) — ¢9Tx("))2 + 21 (0 — \59/‘)2
1= =

n
i AN\ 2
= argmin Z (y(’) - OTX(’)) + )63
A
== éridge is the least-squares solution 6 but using )N(, y instead of X, y!

This is a sometimes useful “recasting” or “rewriting” for ridge.
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L2 AND NOISY FEATURES

Now consider perturbed features %) := x + §() where ) % (0, Al,).

We assume no specifc distribution. Now m|n|m|ze risk with L2 loss, we define it slightly
different than usual, as here our data x?, y ) are fixed, but we integrate over the
random permutations §:

R(0) := Es [é(y(’) — 07| = K, [Z( 07 (x" +8))2] | expand

i=1
R(6) = Es [Z((y(') —0"x")? — 29780y —9Tx") + eTams“Wa)}
i=1
By linearity of expectation, E5[6()] = 0, and E5[6)6()T] = \I,, this is
R(0) = > (V" — 0"x")? — 20 E;5[6) (v — 0"x") + 0 Es[6" 5" 10)

i=

n . .
=3/ -0 X" + \|6]3

i=1

—> Ridge regression on unperturbed features x() turns out to be the same as
minimizing squared loss averaged over feature noise distribution!
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