Introduction to Machine Learning

Regularization
Other Regularizers

0 Learning goals
@ L1/L2 regularization induces bias
@ Lg (quasi-)norm regularization

@ LO regularization
i et bk S B @ SCAD and MCP

X X



RIDGE AND LASSO ARE BIASED ESTIMATORS

Although ridge and lasso have many nice properties, they are biased
estimators and the bias does not (necessarily) vanish as n — oc.

For example, in the orthonormal case (X X = /) the bias of the lasso is
E|6;— 6| =0 if6;=0
E|0;— 6 ~ 6 if |6;] € [0, )]
E|6,— 60| ~ X i 6;] > A

To reduce the bias/shrinkage of regularized estimators various
penalties were proposed, a few of which we briefly introduce now.
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LQ REGULARIZATION

Besides L1/L2 we could use any Lg (quasi-)norm penalty )\||0||8
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Figure: Top: loss contours and L1/L2 constraints. Bottom: Constraints for Lg norms 221019

g=4 q=2 g=1
| |
t T

@ For g < 1 penalty becomes non-convex but for g > 1 no sparsity is achieved

@ Non-convex Lq has nice properties like oracle property GaZlEREEREEIED:
consistent (+ asy. unbiased) param estimation and var selection

@ Downside: non-convexity makes optimization even harder than L1
(no unique global minimum but multiple local minima)
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https://doi.org/10.1214/aos/1015957397
https://academic.oup.com/jrsssb/article/67/2/301/7109482?login=false

LO REGULARIZATION

Rreg(0) = Remp(0) + Al[€]lo := Remp(0) + )\Z 16;(°.
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LO "norm" simply counts the nr of non-zero params

Penalty

Induces sparsity more aggressively than L1, but does not shrink
AIC and BIC are special cases of LO
LO-regularized risk is not continuous or convex

NP-hard to optimize; for smaller n and p somewhat tractable,
efficient approximations are still current research
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SCAD

Smoothly Clipped Absolute Deviations:
non-convex, v > 2 controlls how fast penalty “tapers off”

6] if 0] < A
2 2
SCAD(6 | A, v) = ¢ ZARE=2 it n < (0] < 42
230 it 6] = A
@ Lasso, quadratic, then const Lasso, SCAD, and MCP
.
@ Smooth
@ Contrary to lasso/ridge, SCAD ’
continuously relaxes g, Sy
penalization rate as |6 *
increases above A '
0
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https://doi.org/10.1198/016214501753382273

MCP

Minimax Concave Penalty:
also non-convex; similar idea as SCAD with v > 1

Mo =&, it o] < 4

MCP(6|\, ~) =
N E o T

@ As with SCAD, MCP starts by Lasso, SCAD, and MCP
applying same penalization rate
as lasso, then smoothly reduces
rate to zero as |0] 1

@ Different from SCAD, MCP
immediately starts relaxing the >
penalization rate, while for g 2
SCAD rate remains flat until o
0] > A

— Lasso
— SCAD

@ Both SCAD and MCP possess
oracle property: they can
consistently select true model
as n — oo while lasso may fail i ) 0
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https://doi.org/10.1214/09-AOS729

EXAMPLE: COMPARING REGULARIZERS

Let's compare coeff paths for lasso, SCAD, and MCP.
We simulate n = 100 samples from the following DGP:

y=x'0+¢c, 0=(4,-4,-220,...,000 ¢R® x ¢~ N(0,1)
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Vertical lines mark optimal A from 10CV.

Conclusion: Lasso underestimates true coeffs while SCAD/MCP
achieve unbiased estimation and better variable selection
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