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RIDGE AND LASSO ARE BIASED ESTIMATORS

Although ridge and lasso have many nice properties, they are biased
estimators and the bias does not (necessarily) vanish as n → ∞.

For example, in the orthonormal case (X⊤X = I) the bias of the lasso is
E
∣∣∣θ̂j − θj

∣∣∣ = 0 if θj = 0

E
∣∣∣θ̂j − θj

∣∣∣ ≈ θj if |θj | ∈ [0, λ]

E
∣∣∣θ̂j − θj

∣∣∣ ≈ λ if |θj | > λ

To reduce the bias/shrinkage of regularized estimators various
penalties were proposed, a few of which we briefly introduce now.
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LQ REGULARIZATION Fu and Knight 2000

Besides L1/L2 we could use any Lq (quasi-)norm penalty λ∥θ∥q
q

Figure: Top: loss contours and L1/L2 constraints. Bottom: Constraints for Lq norms
∑

j |θj |q .

For q < 1 penalty becomes non-convex but for q > 1 no sparsity is achieved

Non-convex Lq has nice properties like oracle property Zou and Hastie 2005 :
consistent (+ asy. unbiased) param estimation and var selection

Downside: non-convexity makes optimization even harder than L1
(no unique global minimum but multiple local minima)
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https://doi.org/10.1214/aos/1015957397
https://academic.oup.com/jrsssb/article/67/2/301/7109482?login=false


L0 REGULARIZATION

Rreg(θ) = Remp(θ) + λ∥θ∥0 := Remp(θ) + λ
∑

j

|θj |0.

L0 "norm" simply counts the nr of non-zero params

Induces sparsity more aggressively than L1, but does not shrink

AIC and BIC are special cases of L0

L0-regularized risk is not continuous or convex

NP-hard to optimize; for smaller n and p somewhat tractable,
efficient approximations are still current research
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SCAD Fan and Li 2001

Smoothly Clipped Absolute Deviations:
non-convex, γ > 2 controlls how fast penalty “tapers off”

SCAD(θ | λ, γ) =


λ|θ| if |θ| ≤ λ
2γλ|θ|−θ2−λ2

2(γ−1) if λ < |θ| < γλ
λ2(γ+1)

2 if |θ| ≥ γλ

Lasso, quadratic, then const

Smooth

Contrary to lasso/ridge, SCAD
continuously relaxes
penalization rate as |θ|
increases above λ
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https://doi.org/10.1198/016214501753382273


MCP Zhang 2010

Minimax Concave Penalty:
also non-convex; similar idea as SCAD with γ > 1

MCP(θ|λ, γ) =

{
λ|θ| − θ2

2γ , if |θ| ≤ γλ
1
2γλ

2, if |θ| > γλ

As with SCAD, MCP starts by
applying same penalization rate
as lasso, then smoothly reduces
rate to zero as |θ| ↑

Different from SCAD, MCP
immediately starts relaxing the
penalization rate, while for
SCAD rate remains flat until
|θ| > λ

Both SCAD and MCP possess
oracle property: they can
consistently select true model
as n → ∞ while lasso may fail
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https://doi.org/10.1214/09-AOS729


EXAMPLE: COMPARING REGULARIZERS

Let’s compare coeff paths for lasso, SCAD, and MCP.

We simulate n = 100 samples from the following DGP:

y = x⊤θ + ε , θ = (4,−4,−2, 2, 0, . . . , 0)⊤ ∈ R1500, xj , ε ∼ N (0, 1)

Vertical lines mark optimal λ from 10CV.

Conclusion: Lasso underestimates true coeffs while SCAD/MCP
achieve unbiased estimation and better variable selection
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