Introduction to Machine Learning

Regularization
Ridge Regression
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Learning goals
@ Regularized linear model
@ Ridge regression / L2 penalty
@ Understand parameter shrinkage

@ Understand correspondence to
constrained optimization
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REGULARIZATION IN LM

@ Can also overfit if p large and n small(er)
@ OLS estimator requires full-rank design matrix

@ For highly correlated features, OLS becomes sensitive to random
errors in response, results in large variance in fit

@ We now add a complexity penalty to the loss:

n
Reeg(0) = (y(’) - eTx(’))2 +X-J(0).

i=1
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RIDGE REGRESSION / L2 PENALTY

Intuitive measure of model complexity is deviation from 0-origin; coeffs
then have no or a weak effect. So we measure J(8) through a vector
norm, shrinking coeffs closer to 0.

éridge = arg min Z (y(’) 07 x( ) + )\292
= argemm ly — X85 + All6]3
Can still analytically solve this:

Name: We add pos. entries along the diagonal "ridge" of X" X
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RIDGE REGRESSION / L2 PENALTY /2

Lety = 3xy — 2x2 + ¢, € ~ N(0, 1). The true minimizer is
0* = (3,—2)7, with Origge = argming |ly — X0||? + \[|0]|%.

Effect of L2 Regularization on Linear Model Solutions
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With increasing regularization, 9,,dge is pulled back to the origin
(contour lines show unregularized objective).
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RIDGE REGRESSION / L2 PENALTY /3

Contours of regularized objective for different A values.
Brigge = arg ming ly — X0||2 + >‘||0H2-

L2 Regularization: A = 0 L2 Regularization: A = 10
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Green = true coefs of the DGP and red = ridge solution.
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RIDGE REGRESSION / L2 PENALTY /4

We understand the geometry of these 2 mixed components in our
regularized risk objective much better, if we formulate the optimization
as a constrained problem (see this as Lagrange multipliers in reverse).

mi S (10— (x| o))

=

st. |02 <t

1 @

NB: There is a bijective relationship between A and t: A 1 = t | and vice versa.
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RIDGE REGRESSION / L2 PENALTY /5

@ Inside constraints perspective: From
origin, jump from contour line to
contour line (better) until you become
infeasible, stop before.

@ We still optimize the Remp(8), but
cannot leave a ball around the origin.

@ Remp(0) grows monotonically if we
move away from 6 (elliptic contours).

@ Solution path moves from origin to
border of feasible region with minimal
L, distance.
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RIDGE REGRESSION / L2 PENALTY /6
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@ Outside constraints perspective:
From 6, jump from contour line to
contour line (worse) until you become
feasible, stop then.

@ So our new optimum will lie on the
boundary of that ball.

@ Solution path moves from
unregularized estimate to feasible
region of regularized objective with
minimal L, distance.
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RIDGE REGRESSION / L2 PENALTY /7

L2 regularization solution path
@ Here we can see entire solution path
for ridge regression

( @ Cyan contours indicate feasible
: regions induced by different As

* @ Red contour lines indicate different
levels of the unreg. objective

[

10 @ Ridge solution (red points) gets
pulled toward origin for increasing A

6
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EXAMPLE: POLYNOMIAL RIDGE REGRESSION

Consider y = f(x) + € where the true (unknown) function is
f(x) =5+ 2x + 10x2 — 2x3 (in red).

Let’s use a dth-order polynomial

d
f(x) =00 + 01X+ -+ 0ax? = 6x/.
j=0

Using model complexity d = 10 overfits:
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EXAMPLE: POLYNOMIAL RIDGE REGRESSION /2

With an L2 penalty we can now select d "too large" but regularize our
model by shrinking its coefficients. Otherwise we have to optimize over
the discrete d.
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A | 6 0 0, 03 04 05 06 07 0 09 010
0.00 1200 1600 480 2300 540 930 420 053 063 013  -0.01
10.00 5.20 130 370 069 190 200 047 020 014 003  -0.00

100.00 1.70 0.46 1.80 0.25 1.80 -0.94 0.34 -0.01 -0.06 0.02 -0.00
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