
Introduction to Machine Learning

Regularization
Ridge Regression

Learning goals
Regularized linear model

Ridge regression / L2 penalty

Understand parameter shrinkage

Understand correspondence to
constrained optimization



REGULARIZATION IN LM

Can also overfit if p large and n small(er)

OLS estimator requires full-rank design matrix

For highly correlated features, OLS becomes sensitive to random
errors in response, results in large variance in fit

We now add a complexity penalty to the loss:

Rreg(θ) =
n∑

i=1

(
y (i) − θ⊤x(i)

)2
+ λ · J(θ).
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RIDGE REGRESSION / L2 PENALTY

Intuitive measure of model complexity is deviation from 0-origin; coeffs
then have no or a weak effect. So we measure J(θ) through a vector
norm, shrinking coeffs closer to 0.

θ̂ridge = argmin
θ

n∑
i=1

(
y (i) − θT x(i)

)2
+ λ

p∑
j=1

θ2
j

= argmin
θ

∥y − Xθ∥2
2 + λ∥θ∥2

2

Can still analytically solve this:

θ̂ridge = (XT X + λI)−1XT y

Name: We add pos. entries along the diagonal "ridge" of XT X

© Introduction to Machine Learning – 2 / 10



RIDGE REGRESSION / L2 PENALTY / 2

Let y = 3x1 − 2x2 + ϵ, ϵ ∼ N(0, 1). The true minimizer is
θ∗ = (3,−2)T , with θ̂ridge = argminθ ∥y − Xθ∥2 + λ∥θ∥2.

With increasing regularization, θ̂ridge is pulled back to the origin
(contour lines show unregularized objective).
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RIDGE REGRESSION / L2 PENALTY / 3

Contours of regularized objective for different λ values.
θ̂ridge = argminθ ∥y − Xθ∥2 + λ∥θ∥2.

Green = true coefs of the DGP and red = ridge solution.
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RIDGE REGRESSION / L2 PENALTY / 4

We understand the geometry of these 2 mixed components in our
regularized risk objective much better, if we formulate the optimization
as a constrained problem (see this as Lagrange multipliers in reverse).

min
θ

n∑
i=1

(
y (i) − f

(
x(i) | θ

))2

s.t. ∥θ∥2
2 ≤ t

NB: There is a bijective relationship between λ and t : λ ↑ ⇒ t ↓ and vice versa.
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RIDGE REGRESSION / L2 PENALTY / 5

Inside constraints perspective: From
origin, jump from contour line to
contour line (better) until you become
infeasible, stop before.

We still optimize the Remp(θ), but
cannot leave a ball around the origin.

Remp(θ) grows monotonically if we
move away from θ̂ (elliptic contours).

Solution path moves from origin to
border of feasible region with minimal
L2 distance.
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RIDGE REGRESSION / L2 PENALTY / 6

Outside constraints perspective:
From θ̂, jump from contour line to
contour line (worse) until you become
feasible, stop then.

So our new optimum will lie on the
boundary of that ball.

Solution path moves from
unregularized estimate to feasible
region of regularized objective with
minimal L2 distance.
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RIDGE REGRESSION / L2 PENALTY / 7

Here we can see entire solution path
for ridge regression

Cyan contours indicate feasible
regions induced by different λs

Red contour lines indicate different
levels of the unreg. objective

Ridge solution (red points) gets
pulled toward origin for increasing λ
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EXAMPLE: POLYNOMIAL RIDGE REGRESSION

Consider y = f (x) + ϵ where the true (unknown) function is
f (x) = 5 + 2x + 10x2 − 2x3 (in red).

Let’s use a d th-order polynomial

f (x) = θ0 + θ1x + · · ·+ θdxd =
d∑

j=0

θjx j .

Using model complexity d = 10 overfits:
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EXAMPLE: POLYNOMIAL RIDGE REGRESSION / 2

With an L2 penalty we can now select d "too large" but regularize our
model by shrinking its coefficients. Otherwise we have to optimize over
the discrete d .

λ θ0 θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10
0.00 12.00 -16.00 4.80 23.00 -5.40 -9.30 4.20 0.53 -0.63 0.13 -0.01

10.00 5.20 1.30 3.70 0.69 1.90 -2.00 0.47 0.20 -0.14 0.03 -0.00
100.00 1.70 0.46 1.80 0.25 1.80 -0.94 0.34 -0.01 -0.06 0.02 -0.00
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