
Introduction to Machine Learning

Regularization
Intuition for L2 Regularization in
Non-Linear Models

Learning goals
Understand how regularization and
parameter shrinkage can be
beneficial to non-linear models



SUMMARY: REGULARIZED RISK MINIMIZATION

If we should define (supervised) ML in only one line, this might be it:

min
θ

Rreg(θ) = min
θ

(
n∑

i=1

L
(

y (i), f
(

x(i) | θ
))

+ λ · J(θ)

)
We can choose for a task at hand:

the hypothesis space of f , which determines how features can
influence the predicted y

the loss function L, which measures how errors should be treated

the regularization J(θ), which encodes our inductive bias and
preference for certain simpler models

By varying these choices one can construct a huge number of different
ML models. Many ML models follow this construction principle or can
be interpreted through the lens of regularized risk minimization.
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REGULARIZATION IN NEURAL NETWORKS

For neural networks, the regularized loss function is:

Rreg(θ) =
1
n

n∑
i=1

L
(

y (i), f
(

x(i) | θ
))

+ λ · J(θ)

where:

L(f (xi ;θ), yi) is the loss function.

f (xi ;θ) is the neural network’s prediction.

J(θ) is the regularization term (e.g., ∥θ∥2
2 for L2 regularization).

λ is the regularization parameter.

Bias: Regularization increases bias because it adds a constraint on the
network parameters, preventing them from fitting the training data
perfectly.
Variance: Regularization decreases variance by limiting the network
parameters’ magnitudes, reducing sensitivity to the training data’s
noise.
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FORMAL BOUNDS

Consider a neural network with parameters θ trained with L2
regularization:

∥θ∥2
2 =

p∑
j=1

θ2
j

The regularized loss function becomes:

Rreg(θ) =
1
n

n∑
i=1

L
(

y (i), f
(

x(i) | θ
))

+ λ∥θ∥2
2

To bound the variance term, note that the regularization term λ∥θ∥2
2

constrains the parameters:

Without regularization (λ = 0), the parameters can grow large,
leading to high variance.
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FORMAL BOUNDS / 2

With regularization (λ > 0), the parameters are constrained,
reducing variance.

Formally, the variance of the model can be bounded as follows:

Var(θ̂Reg) ≤
σ2

λ

where σ2 is the noise variance. As λ increases, the bound on the
variance decreases.
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DERIVING THE BOUND FOR VARIANCE OF
NEURAL NETWORK PREDICTIONS

To derive the bound for the variance of the parameter estimates in a
neural network with L2 regularization, we follow these steps:
Neural Network with L2 Regularization: The regularized loss function
is:

Rreg(θ) =
1
n

n∑
i=1

L
(

y (i), f
(

x(i) | θ
))

+ λ∥θ∥2
2

Bias-Variance Decomposition: The mean squared error (MSE)
decomposition is:

E [(ŷ − y)2] = Bias2(ŷ) + Var(ŷ) + σ2

Step-by-Step Derivation:

Model the Neural Network Parameters: θ̂ = θ∗ + ϵ
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DERIVING THE BOUND FOR VARIANCE OF
NEURAL NETWORK PREDICTIONS / 2

Apply Regularization:
θ̂Reg = argminθ

{
1
n

∑n
i=1 L

(
y (i), f

(
x(i) | θ

))
+ λ∥θ∥2

2

}
Analyzing the Variance: Var(θ̂Reg) ≈ (I(θ) + 2λI)−1σ2

Bounding the Variance: Given the properties of the Hessian matrix H:

Var(θ̂Reg) ≤
σ2

2λ
I

The variance of the neural network prediction is bounded by:

Var(f (x ; θ̂Reg)) ≤
σ2

2λ
∥∇θf (x ; θ̂Reg)∥2

Conclusion: Regularization reduces the variance of the parameter
estimates and helps in reducing overfitting by balancing the bias and
variance.
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BIAS ANALYSIS IN NEURAL NETWORKS

To analyze the bias term:
Bias Term: Regularization introduces bias by shrinking the parameter
estimates towards zero:

Bias(f (x)) = E [f (x ; θ̂Reg)]− f ∗(x)

Using a linear approximation:

E [f (x ; θ̂Reg)] ≈ f (x ;θ∗)− λ∇θf (x ;θ∗)T H−1θ∗

Thus, the bias is:

Bias(f (x)) = −λ∇θf (x ;θ∗)T H−1θ∗

Combined Bias and Variance Analysis:

Bias: Bias2(f (x)) = (λ∇θf (x ;θ∗)T H−1θ∗)2

Variance: Var(f (x ; θ̂Reg)) ≤ σ2

2λ∥∇θf (x ; θ̂Reg)∥2
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REDUCTION IN VARIANCE VS. INCREASE IN BIAS

To show that the reduction in variance is usually more than the increase
in bias, consider:
Bias-Variance Trade-off: The MSE is decomposed as:

MSE = Bias2(f (x)) + Var(f (x)) + σ2

Change in Bias and Variance:

Change in Bias: ∆Bias2 ∝ λ2

Change in Variance: ∆Var ∝ − 1
λ

For small λ, the reduction in variance is significant, while the increase
in bias is relatively small. The reduction in variance usually outweighs
the increase in bias, leading to an overall decrease in MSE.
Conclusion: Regularization helps in reducing the overall prediction
error by balancing the bias and variance effectively.
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CRITIQUE: BIAS-VARIANCE TRADEOFF AND
OPTIMIZATION

For linear models, it’s well-established that some λ > 0 can balance the
increase in bias against the reduction in variance, leading to a net
decrease in MSE. For non-linear models, the situation is more complex:

The relationship between model parameters θ, the regularization
term, and the model output f (x ;θ) is non-linear.

The effects of changing λ on the bias and variance terms are not
straightforward and depend heavily on the specific form of the
non-linear model and the data distribution.

Proving analytically that there exists a λ > 0 such that the regularized
model always outperforms the unregularized model in terms of MSE for
general non-linear models involves:

Detailed understanding of how changes in λ affect the bias and
variance for the specific type of non-linear model.
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CRITIQUE: BIAS-VARIANCE TRADEOFF AND
OPTIMIZATION / 2

Possibly making assumptions about the smoothness, continuity, or
differentiability of the model function f with respect to both x and θ.
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CRITIQUE: CONCLUSION

In summary, while it is conceptually feasible to argue that an
appropriate λ > 0 might improve the MSE by balancing bias and
variance, providing a universal, formal proof for all non-linear models
would require either restrictive assumptions about the models and data
or a very specific setup where the non-linearities are well understood
and mathematically tractable.
For practical purposes, empirical validation through techniques such as
cross-validation remains a critical method to determine the optimal λ for
specific non-linear models and datasets.
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COUNTEREXAMPLE

Chris: I think ChatGPT produced a lot of "almost correct" stuff that
culminated in a globally useless derivation. A general proof for DNNs
imo can not work by giving a simple counterexample.

A diagonal linear network with one hidden layer and one output
unit can be written as f (x |u, v) = (u ⊙ v)⊤x

optimizing the network with L2 regularization λ and MSE loss has
multiple global minima that coincide with the lasso solution for the
collapsed parameter θ := u ⊙ v using 2λ

Since there is no existence theorem (of a λ∗ that reduces the MSE
over OLS) for lasso compared to ridge regression, there can not
be one for L2 regularized DNNs in general.
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COUNTEREXAMPLE / 2

For fully-connected linear networks using L weight matrices
f (x |WL, . . . ,W1) = WL · . . . · W1x , adding L2 regularization with λ
to all Wl produces equivalent minma to Schatten 2/L-norm
regularization of the the collapsed linear predictor
W̄x := WL · . . . · W1x with strength Lλ

I am fairly certain there is also no existence theorem for
non-convex Schatten 2/L-norm regularization, their success
depends strongly on the low-rank nature of the problem

For MLPs beyond linear DNNs there are also some results for the
"induced regularizer" in specific cases, which is often a complex or
non-analytical expression. For these, there are also no existence
theorems
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COUNTEREXAMPLE / 3

Neyshabur et al., 2015 derive equivalent optimization problems for L2
regularized shallow relu-networks:

argmin
v∈RH ,(uh)

H
h=1

(
n∑

t=1

L

(
yt ,

H∑
h=1

vh [⟨uh, x t⟩]+

)
+

λ

2

H∑
h=1

(
∥uh∥2 + |vh|2

))
,

is the same as

argmin
v∈RH ,(uh)

H
h=1

(
n∑

t=1

L

(
yt ,

H∑
h=1

vh [⟨uh, x t⟩]+

)
+ λ

H∑
h=1

|vh|

)
,

subject to ∥uh∥ ≤ 1 (h = 1, . . . ,H).

How can we do a general analysis of the effect of L2 regularization
in DNNs when there are these close connections to other
regularized problems for which there is no anaysis of the
bias-variance trade-off and no existence theorem of an optimal
λ∗ > 0?
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