Introduction to Machine Learning

Regularization Lasso vs. Ridge

Learning goals

- Properties of ridge vs. lasso
- Coefficient paths
- What happens with corr. features
- Why we need feature scaling

LASSO VS. RIDGE GEOMETRY

× 0 0 × × ×

- In both cases (and for sufficiently large λ), the solution which minimizes $\mathcal{R}_{reg}(\theta)$ is always a point on the boundary of the feasible region.
- As expected, $\hat{\theta}_{\text{lasso}}$ and $\hat{\theta}_{\text{ridge}}$ have smaller parameter norms than $\hat{\theta}$.
- For lasso, solution likely touches a vertex of constraint region. Induces sparsity and is a form of variable selection.
- For p > n: lasso selects at most *n* features Zou and Hastie 2005

COEFFICIENT PATHS AND 0-SHRINKAGE

Example 1: Motor Trend Car Roads Test (mtcars) We see how only lasso shrinks to exactly 0.

× 0 0 × ×

NB: No real overfitting here, as data is so low-dim.

COEFFICIENT PATHS AND 0-SHRINKAGE / 2

Example 2: High-dim., corr. simulated data: p = 50; n = 100

$$y = 10 \cdot (x_1 + x_2) + 5 \cdot (x_3 + x_4) + 1 \cdot \sum_{j=5}^{14} x_j + \epsilon$$

36/50 vars are noise; $\epsilon \sim \mathcal{N}(0, 1)$; $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \Sigma)$; $\Sigma_{k,l} = 0.7^{|k-l|}$

REGULARIZATION AND FEATURE SCALING

- Typically we omit θ₀ in penalty J(θ) so that the "infinitely" regularized model is the constant model (but can be implementation-dependent).
- Unregularized LM has **rescaling equivariance**, if you scale some features, can simply "anti-scale" coefs and risk does not change.
- Not true for Reg-LM: if you down-scale features, coeffs become larger to counteract. They are then penalized stronger in $J(\theta)$, making them less attractive without any relevenat reason.
- So: usually standardize features in regularized models, whether linear or non-linear!

× < 0 × × ×

REGULARIZATION AND FEATURE SCALING / 2

• Let the DGP be
$$y = \sum_{j=1}^{5} \theta_j x_j + \varepsilon$$
 for $\theta = (1, 2, 3, 4, 5)^{\top}, \varepsilon \sim \mathcal{N}(0, 1)$

• Suppose x_5 was measured in *m* but we change the unit to cm ($\tilde{x}_5 = 100 \cdot x_5$):

Method	$\hat{ heta}_1$	$\hat{ heta}_2$	$\hat{ heta}_3$	$\hat{ heta}_4$	$\hat{ heta}_5$	MSE
OLS	0.984	2.147	3.006	3.918	5.205	0.812
OLS Rescaled	0.984	2.147	3.006	3.918	0.052	0.812

× 0 0 × × ×

- Estimate $\hat{\theta}_5$ gets scaled by 1/100 while other estimates and MSE are invariant
- Running ridge regression with λ = 10 on same data shows that rescaling of of x₅ does not result in inverse rescaling of θ₅ (everything changes!)
- This is because $\hat{\theta}_5$ now lives on small scale while *L*2 constraint stays the same. Hence remaining estimates can "afford" larger magnitudes.

Method	$\hat{ heta}_1$	$\hat{ heta}_2$	$\hat{ heta}_3$	$\hat{ heta}_4$	$\hat{ heta}_5$	MSE
Ridge	0.709	1.874	2.661	3.558	4.636	1.366
Ridge Rescaled	0.802	1.943	2.675	3.569	0.051	1.08

• For lasso, especially for very correlated features, we could arbitrarily force a feature out of the model through a unit change.

CORRELATED FEATURES: L1 VS L2

Simulation with n = 100:

 $y = 0.2x_1 + 0.2x_2 + 0.2x_3 + 0.2x_4 + 0.2x_5 + \epsilon$

 x_1 - x_4 are independent, but x_4 and x_5 are strongly correlated.

- L1 removes x_5 early, L2 has similar coeffs for x_4, x_5 for larger λ
- Also called "grouping property": for ridge highly corr. features tend to have equal effects; lasso however "decides" what to select
- L1 selection is somewhat "arbitrary"

CORRELATED FEATURES: L1 VS L2 / 2

More detailed answer: The "random" decision is in fact a complex deterministic interaction of data geometry (e.g., corr. structures), the optimization method, and its hyperparamters (e.g., initialization). The theoretical reason for this behavior relates to the convexity of the penalties (Zou and Hastie 2005).

Considering perfectly collinear features $x_4 = x_5$ in the last example, we can obtain some more formal intuition for this phenomenon:

• Because L2 penalty is *strictly* convex:

 $x_4 = x_5 \implies \hat{ heta}_{4, ridge} = \hat{ heta}_{5, ridge}$ (grouping prop.)

L1 penalty is not *strictly* convex. Hence, no unique solution exists if x₄ = x₅, and sum of coefficients can be arbitrarily allocated to both features while remaining minimizers (no grouping property!): For any solution θ_{4,lasso}, θ_{5,lasso}, equivalent minimizers are given by

 $\tilde{\theta}_{4,\textit{lasso}} = s \cdot (\hat{\theta}_{4,\textit{lasso}} + \hat{\theta}_{5,\textit{lasso}}) \text{ and } \tilde{\theta}_{5,\textit{lasso}} = (1 - s) \cdot (\hat{\theta}_{4,\textit{lasso}} + \hat{\theta}_{5,\textit{lasso}}) \, \forall s \in [0, 1]$

SUMMARY (Tibshirani 1996 Zou and Hastie 2005

- Neither ridge nor lasso can be classified as better overall
- Lasso can shrink some coeffs to zero, so selects features; ridge usually leads to dense solutions, with smaller coeffs
- Lasso likely better if true underlying structure is sparse ridge works well if there are many (weakly) influential features
- Lasso has difficulties handling correlated predictors; for high correlation, ridge dominates lasso in performance
- Lasso: for (highly) correlated predictors, usually an "arbitrary" one is selected, with large coeff, while the others are (nearly) zeroed
- Ridge: coeffs of correlated features are similar

× < 0 × × ×