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LASSO VS. RIDGE GEOMETRY

min
θ

n∑
i=1

(
y (i) − f

(
x(i) | θ

))2
s.t. ∥θ∥p

p ≤ t

In both cases (and for sufficiently large λ), the solution which minimizes
Rreg(θ) is always a point on the boundary of the feasible region.

As expected, θ̂lasso and θ̂ridge have smaller parameter norms than θ̂.

For lasso, solution likely touches a vertex of constraint region.
Induces sparsity and is a form of variable selection.

For p > n: lasso selects at most n features Zou and Hastie 2005 .
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COEFFICIENT PATHS AND 0-SHRINKAGE

Example 1: Motor Trend Car Roads Test (mtcars)
We see how only lasso shrinks to exactly 0.

NB: No real overfitting here, as data is so low-dim.
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COEFFICIENT PATHS AND 0-SHRINKAGE / 2

Example 2: High-dim., corr. simulated data: p = 50; n = 100

y = 10 · (x1 + x2) + 5 · (x3 + x4) + 1 ·
14∑

j=5

xj + ϵ

36/50 vars are noise; ϵ ∼ N (0, 1); x ∼ N (0,Σ); Σk ,l = 0.7|k−l|
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REGULARIZATION AND FEATURE SCALING

Typically we omit θ0 in penalty J(θ) so that the “infinitely”
regularized model is the constant model (but can be
implementation-dependent).

Unregularized LM has rescaling equivariance, if you scale some
features, can simply "anti-scale" coefs and risk does not change.

Not true for Reg-LM: if you down-scale features, coeffs become
larger to counteract. They are then penalized stronger in J(θ),
making them less attractive without any relevenat reason.

So: usually standardize features in regularized models,
whether linear or non-linear!
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REGULARIZATION AND FEATURE SCALING / 2

Let the DGP be y =
∑5

j=1 θj xj + ε for θ = (1, 2, 3, 4, 5)⊤, ε ∼ N (0, 1)

Suppose x5 was measured in m but we change the unit to cm (x̃5 = 100 · x5):

Method θ̂1 θ̂2 θ̂3 θ̂4 θ̂5 MSE
OLS 0.984 2.147 3.006 3.918 5.205 0.812

OLS Rescaled 0.984 2.147 3.006 3.918 0.052 0.812

Estimate θ̂5 gets scaled by 1/100 while other estimates and MSE are invariant

Running ridge regression with λ = 10 on same data shows that rescaling of of x5

does not result in inverse rescaling of θ̂5 (everything changes!)

This is because θ̂5 now lives on small scale while L2 constraint stays the same.
Hence remaining estimates can “afford” larger magnitudes.

Method θ̂1 θ̂2 θ̂3 θ̂4 θ̂5 MSE
Ridge 0.709 1.874 2.661 3.558 4.636 1.366

Ridge Rescaled 0.802 1.943 2.675 3.569 0.051 1.08

For lasso, especially for very correlated features, we could arbitrarily force a
feature out of the model through a unit change.
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CORRELATED FEATURES: L1 VS L2

Simulation with n = 100:

y = 0.2x1 + 0.2x2 + 0.2x3 + 0.2x4 + 0.2x5 + ϵ

x1-x4 are independent, but x4 and x5 are strongly correlated.

L1 removes x5 early, L2 has similar coeffs for x4, x5 for larger λ

Also called “grouping property”: for ridge highly corr. features tend
to have equal effects; lasso however “decides“ what to select

L1 selection is somewhat “arbitrary”
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CORRELATED FEATURES: L1 VS L2 / 2

More detailed answer: The “random” decision is in fact a complex
deterministic interaction of data geometry (e.g., corr. structures), the
optimization method, and its hyperparamters (e.g., initialization). The
theoretical reason for this behavior relates to the convexity of the
penalties Zou and Hastie 2005 .

Considering perfectly collinear features x4 = x5 in the last example, we
can obtain some more formal intuition for this phenomenon:

Because L2 penalty is strictly convex:
x4 = x5 =⇒ θ̂4,ridge = θ̂5,ridge (grouping prop.)

L1 penalty is not strictly convex. Hence, no unique solution exists
if x4 = x5, and sum of coefficients can be arbitrarily allocated to
both features while remaining minimizers (no grouping property!):
For any solution θ̂4,lasso, θ̂5,lasso, equivalent minimizers are given by

θ̃4,lasso = s ·(θ̂4,lasso + θ̂5,lasso) and θ̃5,lasso = (1−s) ·(θ̂4,lasso + θ̂5,lasso)∀s ∈ [0, 1]
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SUMMARY Tibshirani 1996 Zou and Hastie 2005

Neither ridge nor lasso can be classified as better overall

Lasso can shrink some coeffs to zero, so selects features;
ridge usually leads to dense solutions, with smaller coeffs

Lasso likely better if true underlying structure is sparse
ridge works well if there are many (weakly) influential features

Lasso has difficulties handling correlated predictors;
for high correlation, ridge dominates lasso in performance

Lasso: for (highly) correlated predictors, usually an “arbitrary” one
is selected, with large coeff, while the others are (nearly) zeroed

Ridge: coeffs of correlated features are similar
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