Introduction to Machine Learning

Regularization
Lasso Regression

Learning goals
@ Lasso regression/ L1 penalty
@ Know that lasso selects features

@ Support recovery
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LASSO REGRESSION

Another shrinkage method is the so-called lasso regression (least
absolute shrinkage and selection operator), Which uses an L1 penalty on o:

n p
Oiasso = argemin Z (y(i) - OTx(i)>2 +A Z 16|
i=1

j=1
— argmin (y — X8) " (y — X8) + A6
]

Optimization is much harder now. Req(8) is still convex, but in general
there is no analytical solution and it is non-differentiable.
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LASSO REGRESSION /2

Lety = 3xy — 2x2 + ¢, € ~ N(0, 1). The true minimizer is
0* = (3,—2)". LHS = L1 regularization; RHS = L2

Effect of L1 Regularization on Linear Model Solutions Effect of L2 Regularization on Linear Model Solutions

With increasing regularization, é,asso is pulled back to the origin, but
takes a different “route”. 0, eventually becomes 0!
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LASSO REGRESSION /3
Contours of regularized objective for different A values. O O X

L1 Regularization: A = 0 L1 Regularization: A = 1
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Green = true minimizer of the unreg.objective and red = lasso solution.
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LASSO REGRESSION /4

Regularized empirical risk Rreg(91 ,02) using squared loss for A 1. L1
penalty makes non-smooth kinks at coordinate axes more pronounced,
while L2 penalty warps Reg toward a “basin” (elliptic paraboloid).

Regularization: 11 A: 1 Regularization: 11 A: 10

Regularization: 11 A: 0

Regularization: 12 A: 0 Regularization: 12 A: 1
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LASSO REGRESSION /5

We can also rewrite this as a constrained optimization problem. The
penalty results in the constrained region to look like a diamond shape.

n
min yO —f(x7 6 : subject to: [|0]]y < t
D)

The kinks in L1 enforce sparse solutions because “the loss contours
first hit the sharp corners of the constraint” at coordinate axes where
(some) entries are zero.

‘smaller param. 8, s removed small X: no sparsity larger A: sparsity

%‘ )

/4

////
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L1 AND L2 REG. WITH ORTHONORMAL DESIGN

For special case of qrthonormal design X X = I we can derive a closed-form x
solution in terms of fos = (X" X)Xy = XTy:
Biasso = sign(fois)(|fors| — N)+  (sparsity) x
Function S(6, \) := sign(6)(]0] — \). is called soft thresholding operator:
For [#] < Ait returns 0, whereas params |¢| > A are shrunken toward 0 by \. x x

Comparing this to friqge under orthonormal design:

~

A 0
9R|dge = (X X+ )\I) 1XT ((1 + /\)I)_190LS _ JOLs

Y (no sparsity)

Lasso vs Ridge solution in terms of OLS (orthonormal design, lambda=3)

Ridge
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COMPARING SOLUTION PATHS FOR L1/L2

@ Ridge results in smooth solution path with non-sparse params
@ Lasso induces sparsity, but only for large enough A

L2 regularization solution path L1 regularization solution path
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SUPPORT RECOVERY OF LASSO

When can lasso select true support of 0, i.e., only the non-zero parameters?
Can be formalized as sign-consistency:

P(sign(d) = sign(8)) — 1asn — oo (wheresign(0) := 0)
Suppose the true DGP given a partition into subvectors 8 = (64, 6,) is
Y = X0 + € = X101 + X260, + e withe ~ (0, 0°I)

and only 8 is non-zero. Let Xy denote the n x g matrix with the relevant

features and X, the matrix of noise features. It can be shown that @,asso is sign
consistent under an irrepresentable condition:

[(X3 X1)(X{ X;) " "sign(64)| < 1 (element-wise)

In fact, lasso can only be sign-consistent if this condition holds.
Intuitively, the irrelevant variables in X, must not be too correlated with (or
representable by) the informative features
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https://www.jmlr.org/papers/volume7/zhao06a/zhao06a.pdf
https://projecteuclid.org/journals/annals-of-statistics/volume-37/issue-1/Lasso-type-recovery-of-sparse-representations-for-high-dimensional-data/10.1214/07-AOS582.full

