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LASSO REGRESSION

Another shrinkage method is the so-called lasso regression (least

absolute shrinkage and selection operator), which uses an L1 penalty on θ:

θ̂lasso = argmin
θ

n∑
i=1

(
y (i) − θT x(i)

)2
+ λ

p∑
j=1

|θj |

= argmin
θ

(y − Xθ)⊤ (y − Xθ) + λ∥θ∥1

Optimization is much harder now. Rreg(θ) is still convex, but in general
there is no analytical solution and it is non-differentiable.
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LASSO REGRESSION / 2

Let y = 3x1 − 2x2 + ϵ, ϵ ∼ N(0, 1). The true minimizer is
θ∗ = (3,−2)T . LHS = L1 regularization; RHS = L2

With increasing regularization, θ̂lasso is pulled back to the origin, but
takes a different “route”. θ2 eventually becomes 0!
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LASSO REGRESSION / 3

Contours of regularized objective for different λ values.

Green = true minimizer of the unreg.objective and red = lasso solution.
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LASSO REGRESSION / 4

Regularized empirical risk Rreg(θ1, θ2) using squared loss for λ ↑. L1
penalty makes non-smooth kinks at coordinate axes more pronounced,
while L2 penalty warps Rreg toward a “basin” (elliptic paraboloid).
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LASSO REGRESSION / 5

We can also rewrite this as a constrained optimization problem. The
penalty results in the constrained region to look like a diamond shape.

min
θ

n∑
i=1

(
y (i) − f

(
x(i) | θ

))2
subject to: ∥θ∥1 ≤ t

The kinks in L1 enforce sparse solutions because “the loss contours
first hit the sharp corners of the constraint” at coordinate axes where
(some) entries are zero.

© Introduction to Machine Learning – 5 / 8



L1 AND L2 REG. WITH ORTHONORMAL DESIGN
For special case of orthonormal design X⊤X = I we can derive a closed-form
solution in terms of θ̂OLS = (X⊤X)−1X⊤y = X⊤y:

θ̂lasso = sign(θ̂OLS)(|θ̂OLS| − λ)+ (sparsity)

Function S(θ, λ) := sign(θ)(|θ| − λ)+ is called soft thresholding operator:
For |θ| ≤ λ it returns 0, whereas params |θ| > λ are shrunken toward 0 by λ.
Comparing this to θ̂Ridge under orthonormal design:

θ̂Ridge = (XT X + λI)−1XT y = ((1 + λ)I)−1θ̂OLS =
θ̂OLS

1 + λ
(no sparsity)
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COMPARING SOLUTION PATHS FOR L1/L2

Ridge results in smooth solution path with non-sparse params

Lasso induces sparsity, but only for large enough λ
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SUPPORT RECOVERY OF LASSO Zhao and Yu 2006

When can lasso select true support of θ, i.e., only the non-zero parameters?
Can be formalized as sign-consistency:

P
(
sign(θ̂) = sign(θ)

)
→ 1 as n → ∞ (where sign(0) := 0)

Suppose the true DGP given a partition into subvectors θ = (θ1,θ2) is

Y = Xθ + ε = X1θ1 + X2θ2 + εwith ε ∼ (0, σ2I)

and only θ1 is non-zero. Let X1 denote the n × q matrix with the relevant

features and X2 the matrix of noise features. It can be shown that θ̂lasso is sign
consistent under an irrepresentable condition:

|(X⊤
2 X1)(X⊤

1 X1)
−1sign(θ1)| < 1 (element-wise)

In fact, lasso can only be sign-consistent if this condition holds.
Intuitively, the irrelevant variables in X2 must not be too correlated with (or
representable by) the informative features Meinshausen and Yu 2009

© Introduction to Machine Learning – 8 / 8

https://www.jmlr.org/papers/volume7/zhao06a/zhao06a.pdf
https://projecteuclid.org/journals/annals-of-statistics/volume-37/issue-1/Lasso-type-recovery-of-sparse-representations-for-high-dimensional-data/10.1214/07-AOS582.full

