Introduction to Machine Learning

Regularization
Elastic Net and regularized GLMs

\  penaty Learning goals

“] i @ Compromise between L1 and L2

Elastic Net

@ Regularized logistic regression
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ELASTIC NET AS L1/L2 COMBO
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@ 2nd formula is simply more convenient to interpret hyperpars;
A controls how much we penalize, « sets the “L2-portion”

@ Correlated features tend to be either selected or zeroed out together

@ Selection of more than n features possible for p > n
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https://academic.oup.com/jrsssb/article/67/2/301/7109482?login=false

SIMULATED EXAMPLE

5-fold CV with nyai» = 100 and 20 repetitions with nwes: = 10000 for setups:
y=x"0+¢ €~N(0,0.1%); x~ N(0,X); X, =08

Lasso better for sparse features: Ridge better for dense features:
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— elastic net handles both cases well
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SIMULATED EXAMPLE /2
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LHS: ridge estimates of noise features hover around 0 while lasso/e-net produce 0s.
RHS: ridge cannot perform variable selection compared to lasso/e-net.
Lasso more frequently ignores relevant features than e-net (longer tails in violin plot).
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REGULARIZED LOGISTIC REGRESSION

@ Penalties can be added very flexibly to any model based on ERM

@ E.g.: L1- or L2-penalized logistic regression for high-dim. spaces
and feature selection

@ Now: LR with polynomial features for x1, xo up to degree 7 and L2
penalty on 2D “circle data” below
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@ )\ = 0: LR without penalty seems to overfit
@ )\ = 0.0001: We get better
@ )\ = 1: Fit looks pretty good
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