Introduction to Machine Learning

Regularization
Early Stopping
Learning goals
_ e @ Know how early stopping works

@ Understand how early stopping acts
as a regularizer
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EARLY STOPPING

@ Especially for complex nonlinear models we can easily overfit

@ In optimization: Often, after a certain number of iterations,
generalization error begins to increase even though training error
continues to decrease
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EARLY STOPPING /2

For iterative optimizers like SGD,
we can monitor this step-by-step over small iterations:

@ Split train data Dyyain iNto Dsyptrain and Dyg (€.9. with ratio of 2:1)
@ Train on Dgypirain and eval model on Dy

© Stop when validation error stops decreasing
(after a range of “patience” steps)

© Use parameters of the previous step for the actual model

More sophisticated forms also apply cross-validation.
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EARLY STOPPING AND 2

Strengths \ Weaknesses

Effective and simple Periodical evaluation of validation error
Applicable to almost any | Temporary copy of 8 (we have to save
model without adjustment | the whole model each time validation
error improves)

Combinable with other | Less data for training — include Dy,
regularization methods afterwards

@ For simple case of LM with squared loss and GD optim initialized
at @ = 0: Early stopping has exact correspondence with L2
regularization/WD: optimal early-stopping iter Tgop inversely
proportional to A scaled by step-size o
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@ Small A (regu. |) = large Tgop (complexity 1) and vice versa
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https://www.deeplearningbook.org/contents/regularization.html

EARLY STOPPING AND [ 2 =T =Ien | 2
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Goodfellow et al. (2016)
@ Solid lines are Remp(6)
@ LHs: Trajectory of GD early stopped, initialized at origin

@ RHS: Constrained form of ridge regularization
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https://www.deeplearningbook.org/contents/regularization.html

SGD TRAJECTORY AND [ 2 @ r i e

Solution paths for L2 regularized linear model closely matches SGD
trajectory of unregularized LM initialized at @ = 0

Ridge Regression Path SGD Trajectory

Parameters.
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Caveat: Initialization at the origin is crucial for this equivalence to hold,
which is almost never exactly used in practice in ML/DL applications
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https://proceedings.mlr.press/v119/ali20a/ali20a.pdf

