Introduction to Machine Learning

Regularization Early Stopping

Learning goals

- Know how early stopping works
- Understand how early stopping acts as a regularizer

EARLY STOPPING

- Especially for complex nonlinear models we can easily overfit
- In optimization: Often, after a certain number of iterations, generalization error begins to increase even though training error continues to decrease

EARLY STOPPING / 2

For iterative optimizers like SGD, we can monitor this step-by-step over small iterations:

- Split train data $\mathcal{D}_{\text{train}}$ into $\mathcal{D}_{\text{subtrain}}$ and \mathcal{D}_{val} (e.g. with ratio of 2:1)
- **2** Train on $\mathcal{D}_{\text{subtrain}}$ and eval model on \mathcal{D}_{val}
- Stop when validation error stops decreasing (after a range of "patience" steps)
- Use parameters of the previous step for the actual model

More sophisticated forms also apply cross-validation.

EARLY STOPPING AND L2 > Goodfellow, Bengio, and Courville 2016

Strengths	Weaknesses
Effective and simple	Periodical evaluation of validation error
Applicable to almost any	Temporary copy of $ heta$ (we have to save
model without adjustment	the whole model each time validation
	error improves)
Combinable with other	Less data for training $ ightarrow$ include \mathcal{D}_{val}
regularization methods	afterwards

 For simple case of LM with squared loss and GD optim initialized at $\theta = 0$: Early stopping has exact correspondence with L2 regularization/WD: optimal early-stopping iter T_{stop} inversely proportional to λ scaled by step-size α

$$T_{\mathsf{stop}} pprox rac{1}{lpha \lambda} \Leftrightarrow \lambda pprox rac{1}{T_{\mathsf{stop}} lpha}$$

• Small λ (regu. \downarrow) \Rightarrow large T_{stop} (complexity \uparrow) and vice versa

EARLY STOPPING AND L2 Goodfellow, Bengio, and Courville 2016 / 2

Goodfellow et al. (2016)

- Solid lines are $\mathcal{R}_{emp}(\theta)$
- LHS: Trajectory of GD early stopped, initialized at origin
- RHS: Constrained form of ridge regularization

SGD TRAJECTORY AND L2 Ali, Dobriban, and Tibshirani 2020

Solution paths for L2 regularized linear model closely matches SGD trajectory of unregularized LM initialized at $\theta=0$

Caveat: Initialization at the origin is crucial for this equivalence to hold, which is almost never exactly used in practice in ML/DL applications

