Introduction to Machine Learning

Regularization

Bias-variance Tradeoff

Closest fit in

Hy Realization population
.

Closest fit

o

Truth & H MODEL
SPACE
Shrunken fit
Model bias A\ %
stimation bias </”\
Estimation bias T Hp

Estimation” ( RESTRICTED
stimatior N
Variance MODEL SPACE

Learning goals

@ Understand the bias-variance
trade-off

@ Know the definition of model bias,
estimation bias, and estimation
variance
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BIAS-VARIANCE TRADEOFF

In this slide set, we will visualize the bias-variance trade-off.

We consider a DGP PPy, with J C R and the L2 loss L. We measure
the distance between models f : X — RY via

d(f, f') = Exp, [L(f(X), ' (x)] .

We define f; as the risk minimizer such that

fy € argmin By ) op,, [L(y, f(X))]
feHo

where Ho = {f: X - R| d(0,f) < oo} and0: X — {0}.
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BIAS-VARIANCE TRADEOFF /2

Our model space H usually is a proper subset of Hg and in general
5 & H.
We define f* as the risk minimizer in 4, i.e.,

f* € argmin By ) op,, [L(F(X, ¥)] -
feH
f* € H is closest to £}, and we call d(f;, f*) the model bias.
Hy
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BIAS-VARIANCE TRADEOFF /3

By regularizing our model, we further restrict the model space so that
Hr is a proper subset of H. We define f5 as the risk minimizer in Hp,
ie.,
fr € argmin By ) op,, [L(F(X, ¥)] -
feHR

f5 € Hpis closest to fyue, and we call d(f3, f*) the estimation bias.
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BIAS-VARIANCE TRADEOFF /4
We sample a finite dataset D = (x), y())" & (P,,)" and find via ERM

fen o
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4, Population Note that the realization is only
Y / Closest fit shown in the visualization for

7 MODEL  didactic purposes but is not an
SPACE
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BIAS-VARIANCE TRADEOFF /s

Let's assume that f is an unbiased estimate of f* (e.g., valid for linear
regression), and we repeat the sampling process of f.

Closest fit in
Ho

opulation
Pop @ We can measure the spread of
Closest fit

. sampled f around f* via
Xy MODEL -
ruh //HS;;E § = Varp [d(f*, f)} which we

call the estimation variance.

Y Hp, —_ e We visualize this as a circle
Est\mat\on/ l RESTRICTED around f* with radius (5
e MODEL SPACE
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BIAS-VARIANCE TRADEOFF /6

We repeat the previous construction in the restricted model space Hg
and sample fgr such that

n
fa € arg min Z L (y(i), ?(x(’))> .
feHp i=1
H() Realization
2. , @ We can measure the spread of
Closest fit | d/]} d £ Vi
L S sample aroun via
Truth v 4 MODEL P i ~ A .
y SPACE d = Varp {d(f;, f,:,)] which we
. Shrunken fit . . .
o also call estimation variance.
Y Ir .
— & Hp @ We observe that the increased

Ewmatwonlﬁ/ """" - , RESTRICTED . .

Variance MODEL SPACE bias results in a smaller
estimation variance in Hg
compared to H.
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