Introduction to Machine Learning

Regularization Bias-variance Tradeoff

X \times \times

Learning goals

- Understand the bias-variance trade-off
- Know the definition of model bias, estimation bias, and estimation variance

In this slide set, we will visualize the bias-variance trade-off.

We consider a DGP \mathbb{P}_{x} with $\mathcal{Y} \subset \mathbb{R}$ and the L2 loss *L*. We measure the distance between models $f:\mathcal{X}\rightarrow\mathbb{R}^g$ via

$$
d(f, f') = \mathbb{E}_{\mathbf{x} \sim \mathbb{P}_{\mathbf{x}}} \left[L(f(\mathbf{x}), f'(\mathbf{x}) \right].
$$

 \times \times

We define f_0^* as the risk minimizer such that

$$
f_0^* \in \argmin_{f \in \mathcal{H}_0} \mathbb{E}_{(\mathbf{x}, y) \sim \mathbb{P}_{xy}} \left[L(y, f(\mathbf{x})) \right]
$$

where $\mathcal{H}_0 = \{f : \mathcal{X} \to \mathbb{R} \mid d(\mathbf{0}, f) < \infty\}$ and $\mathbf{0} : \mathcal{X} \to \{0\}.$

 \mathcal{H}_0

Our model space H usually is a proper subset of \mathcal{H}_0 and in general *f*₀^{*} ∉ H. We define f^* as the risk minimizer in \mathcal{H} , i.e.,

$$
f^* \in \argmin_{f \in \mathcal{H}} \mathbb{E}_{(\mathbf{x}, y) \sim \mathbb{P}_{xy}} \left[L(f(\mathbf{x}, y)) \right].
$$

 $f^* \in \mathcal{H}$ is closest to f_0^* , and we call $d(f_0^*, f^*)$ the model bias.

X X

By regularizing our model, we further restrict the model space so that \mathcal{H}_R is a proper subset of $\mathcal{H}.$ We define f^*_R as the risk minimizer in $\mathcal{H}_R,$ i.e.,

$$
f_R^* \in \argmin_{f \in \mathcal{H}_R} \mathbb{E}_{(\mathbf{x}, y) \sim \mathbb{P}_{xy}} \left[L(f(\mathbf{x}, y)) \right].
$$

 $f^*_R \in \mathcal{H}_R$ is closest to f_true , and we call $d(f^*_R, f^*)$ the estimation bias.

 \times \times

We sample a finite dataset $\mathcal{D}=\left(\mathbf{x}^{(i)},y^{(i)}\right)^n\in\left(\mathbb{P}_{\mathsf{x}\mathsf{y}}\right)^n$ and find via ERM

$$
\hat{f} \in \underset{f \in \mathcal{H}}{\arg \min} \sum_{i=1}^n L\left(y^{(i)}, \hat{f}(\mathbf{x}^{(i)})\right).
$$

Note that the realization is only shown in the visualization for didactic purposes but is not an element of \mathcal{H}_0 .

 \times \times

Let's assume that \hat{f} is an unbiased estimate of f^* (e.g., valid for linear regression), and we repeat the sampling process of \hat{f} .

- We can measure the spread of sampled *î*≀around *f** via $\delta = \textsf{Var}_{\mathcal{D}}\left[d(f^*, \hat{f})\right]$ which we call the estimation variance.
- We visualize this as a circle around f^* with radius δ .

 $\overline{\mathsf{x}}$

We repeat the previous construction in the restricted model space \mathcal{H}_R and sample \hat{f}_B such that

$$
\hat{f}_R \in \underset{f \in \mathcal{H}_R}{\arg \min} \sum_{i=1}^n L\left(y^{(i)}, \hat{f}(\mathbf{x}^{(i)})\right).
$$

 \times \times

- We can measure the spread of sampled \hat{f}_R around f_R^* via *R* $\delta = \textsf{Var}_{\mathcal{D}}\left[d(f^*_{\mathsf{R}}, \hat{f}_{\mathsf{R}})\right]$ which we also call estimation variance.
- We observe that the increased bias results in a smaller estimation variance in H*^R* compared to H .