
Introduction to Machine Learning

Regularization
Bayesian Priors

Learning goals
RRM is same as MAP in Bayes

Gaussian/Laplace prior corresponds
to L2/L1 penalty



RRM VS. BAYES

We already created a link between max. likelihood estimation and ERM.

Now we will generalize this for RRM.

Assume we have a parameterized distribution p(y |θ, x) for our data
and a prior q(θ) over our param space, all in Bayesian framework.

From Bayes theorem:

p(θ|x, y) = p(y |θ, x)q(θ)
p(y |x)

∝ p(y |θ, x)q(θ)
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RRM VS. BAYES / 2

The maximum a posteriori (MAP) estimator of θ is now the minimizer of

− log p (y | θ, x)− log q(θ).

Again, we identify the loss L (y , f (x | θ)) with − log(p(y |θ, x)).
If q(θ) is constant (i.e., we used a uniform, non-informative prior),
the second term is irrelevant and we arrive at ERM.

If not, we can identify J(θ) ∝ − log(q(θ)), i.e., the log-prior
corresponds to the regularizer, and the additional λ, which controls
the strength of our penalty, usually influences the peakedness /
inverse variance / strength of our prior.
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RRM VS. BAYES / 3

L2 regularization corresponds to a zero-mean Gaussian prior with constant
variance on our parameters: θj ∼ N (0, τ 2)

L1 corresponds to a zero-mean Laplace prior: θj ∼ Laplace(0, b). Laplace(µ, b)
has density 1

2b exp(−
|µ−x|

b ), with scale parameter b, mean µ and variance 2b2.

In both cases, regularization strength increases as variance of prior decreases:
more prior mass concentrated around 0 encourages shrinkage.

Elastic-net regularization corresponds to a compromise between Gaussian and
Laplacian priors Zou and Hastie 2005 Hans 2011
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https://academic.oup.com/jrsssb/article/67/2/301/7109482?login=false
https://www.jstor.org/stable/23239545


EXAMPLE: BAYESIAN L2 REGULARIZATION
We can easily see the equivalence of L2 regularization and a Gaussian prior:

Gaussian prior Nd(0, diag(τ 2)) with uncorrelated components for θ:

q(θ) =
d∏

j=1

ϕ0,τ2(θj) = (2πτ 2)−
d
2 exp

(
− 1

2τ 2

d∑
j=1

θ2
j

)

MAP:

θ̂MAP = argmin
θ

(− log p (y | θ, x)− log q(θ))

= argmin
θ

(
− log p (y | θ, x) + d

2 log(2πτ 2) +
1

2τ 2

d∑
j=1

θ2
j

)

= argmin
θ

(
− log p (y | θ, x) +

1
2τ 2

∥θ∥2
2

)
We see how the inverse variance (precision) 1/τ 2 controls shrinkage
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EXAMPLE: BAYESIAN L2 REGULARIZATION / 2

DGP y = θ + ε where ε ∼ N (0, 1) and θ = 1;
with Gaussian prior on θ, so N (0, τ 2) for τ ∈ {0.25, 0.5, 2}

For n = 20, posterior of θ and MAP can be calculated analytically

Plotting the L2 regularized empirical risk Rreg(θ) =
∑n

i=1(yi − θ)2 + λθ2

with λ = 1/τ 2 shows that ridge solution is identical with MAP

In our simulation, the empirical mean is ȳ = 0.94, with shrinkage toward
0 induced in the MAP
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