Introduction to Machine Learning

Regularization
Bayesian Priors

Learning goals
@ RRM is same as MAP in Bayes

» < G 7//\\7 @ Gaussian/Laplace prior corresponds
to L2/L1 penalty
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RRM VS. BAYES

We already created a link between max. likelihood estimation and ERM.
Now we will generalize this for RRM.

Assume we have a parameterized distribution p(y|@, x) for our data
and a prior g(@) over our param space, all in Bayesian framework.
From Bayes theorem:

plox. ) = VT o piy16.x)a(6)
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RRM VS. BAYES /2

The maximum a posteriori (MAP) estimator of 8 is now the minimizer of

—logp(y | 8,x) —log q(0).
@ Again, we identify the loss L (y, f(x | €)) with — log(p(y|0, X)).

@ If g(@) is constant (i.e., we used a uniform, non-informative prior),
the second term is irrelevant and we arrive at ERM.

@ If not, we can identify J(8) o< — log(q(®)), i.e., the log-prior
corresponds to the regularizer, and the additional A, which controls
the strength of our penalty, usually influences the peakedness /
inverse variance / strength of our prior.
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RRM VS. BAYES /3
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L2 regularization corresponds to a zero-mean Gaussian prior with constant
variance on our parameters: 6; ~ N/(0, 77)

L1 corresponds to a zero-mean Laplace prior: 6; ~ Laplace(0, b). Laplace(u, b)
has density zlb exp(— “‘;Xl ), with scale parameter b, mean p and variance 212,

In both cases, regularization strength increases as variance of prior decreases:
more prior mass concentrated around 0 encourages shrinkage.

Elastic-net regularization corresponds to a compromise between Gaussian and
Laplacian priors » Zou and Hastie 2005
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https://academic.oup.com/jrsssb/article/67/2/301/7109482?login=false
https://www.jstor.org/stable/23239545

EXAMPLE: BAYESIAN L2 REGULARIZATION

We can easily see the equivalence of L2 regularization and a Gaussian prior:

@ Gaussian prior NVy(0, diag(72)) with uncorrelated components for 6:

a(0) =[] 60.:(6) = (2rr*) F exp (—2; Z@f)

j=1 j=1

@ MAP:

oM = argemin (—logp(y|06,x)—logq(0))

d
. 1
= argmin (— logp(y|6,x)+ 2 log(27r7?) + 52 Z 0,2>
6 :
Jj=1
— argmin (~logp(y] 6.0+ 55161

@ We see how the inverse variance (precision) 1/72 controls shrinkage
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EXAMPLE: BAYESIAN L2 REGULARIZATION /2
@ DGPy =0+ cwheree ~ N(0,1)and 6 = 1;
with Gaussian prior on 6, so N(0, 72) for 7 € {0.25,0.5, 2}
@ For n = 20, posterior of § and MAP can be calculated analytically

@ Plotting the L2 regularized empirical risk Rreq(0) = Y7, (vi — 0)* + 202
with A = 1/72 shows that ridge solution is identical with MAP

@ In our simulation, the empirical mean is y = 0.94, with shrinkage toward
0 induced in the MAP

Prior Std. Dev. 0.25 = 0.5 2
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