
Introduction to Machine Learning

Regularization
Bagging as Regularization (Deep-Dive)

Original Data

Bootstrap
samples

Learning goals
Understand that bagging can be seen
as a form of regularization

Know which factors influence the
effectiveness of bagging



RECAP: WHAT IS BAGGING?

Bagging is short for Bootstrap Aggregation.

It’s an ensemble method, i.e., it combines many models into one
big “meta-model”. Ensembles often work much better than their
members alone would.

The components of an ensemble are called base learners (BLs)

In a bagging ensemble, all base learners are of the same type.
The only difference between the models is the data they are
trained on.

Original Data

Bootstrap
samples
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RECAP: WHAT IS BAGGING? / 2

Specifically, we train base learners b[m],m = 1, . . . ,M on M bootstrap
samples of training data D:

Draw n observations from D with replacement

Fit the base learner on each of the M bootstrap samples to get
models f̂ (x) = b̂[m],m = 1, . . . ,M

Aggregate predictions of the M fitted base learners to get
ensemble model f̂ [M](x) via averaging (regression) or majority
voting (classification)

Bagging helps because variability of the averaged prediction over many base
learners is smaller than variability of the predictions from one such model. If
error of BL is mostly due to (random) variability and not structural reasons
bagging helps reducing this variability.
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WHY/WHEN DOES BAGGING HELP?
Assume we use quadratic loss and measure instability of the ensemble with
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So, if we take the expected value over the data’s distribution:
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⇒ Expected loss of the ensemble is lower than the average loss of single BL
by the amount of instability in the ensemble’s BLs. The more accurate and
diverse the BLs, the better.
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DETERMINANTS OF BAGGING EFFECTIVENESS
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DETERMINANTS OF BAGGING EFFECTIVENESS / 2
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⇒ better base learners are better (... duh)

⇒ more base learners are better (theoretically, at least...)

⇒ more variable base learners are better (as long as their risk stays
the same, of course!)

⇒ less correlation between base learners is better:
bagging helps more if base learners are wrong in different ways so
that their errors “cancel” each other out.
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BAGGING SUMMARY

Basic idea: fit the same model repeatedly on many bootstrap
replications of the training data set and aggregate the results

Gains in performance by reducing variance of predictions, but
(slightly) increases the bias: it reuses training data many times, so
small mistakes can get amplified.
Bagging is thus a form of regularization

Works best for unstable/high-variance BLs, where small changes
in training set can cause large changes in predictions:
e.g., CART, neural networks, step-wise/forward/backward variable
selection for regression

Works best if BL predictions are only weakly correlated: they don’t
all make the same mistakes.

Can degrade performance for stable methods like k -NN, LDA,
Naive Bayes, linear regression
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