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BIAS-VARIANCE DECOMPOSITION FOR RIDGE

For a linear model y = Xθ + ε with fixed design
X ∈ Rn×p and ε ∼ (0, σ2In), bias of ridge estimator θ̂ridge is given by

Bias(θ̂ridge) := E[θ̂ridge − θ] = E[(X⊤X + λIp)
−1X⊤y ]− θ

= E[(X⊤X + λIp)
−1X⊤(Xθ + ε)]− θ

= (X⊤X + λIp)
−1X⊤Xθ + (X⊤X + λIp)

−1X⊤ E[ε]︸︷︷︸
=0

−θ

= (X⊤X + λIp)
−1X⊤Xθ − θ

=
[
(X⊤X + λIp)

−1 − (X⊤X)−1
]

X⊤Xθ

Last expression shows bias of ridge estimator only vanishes for
λ = 0, which is simply (unbiased) OLS solution

It follows ∥Bias(θ̂ridge)∥2
2 > 0 for all λ > 0
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BIAS-VARIANCE DECOMPOSITION FOR RIDGE / 2

For the variance of θ̂ridge, we have

Var(θ̂ridge) = Var
(
(X⊤X + λIp)

−1X⊤y
) ∣∣ apply Varu(Au) = AVar(u)A⊤

= (X⊤X + λIp)
−1X⊤Var(y)

(
(X⊤X + λIp)

−1X⊤
)⊤

= (X⊤X + λIp)
−1X⊤Var(ε)X(X⊤X + λIp)

−1

= (X⊤X + λIp)
−1X⊤σ2InX(X⊤X + λIp)

−1

= σ2(X⊤X + λIp)
−1X⊤X(X⊤X + λIp)

−1

Var(θ̂ridge) is strictly smaller than Var(θ̂OLS) = σ2(X⊤X)−1 for any
λ > 0, meaning matrix of their difference Var(θ̂OLS)− Var(θ̂ridge) is
positive definite (bit tedious derivation)

This further means trace
(
Var(θ̂OLS)− Var(θ̂ridge)

)
> 0 ∀λ > 0
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BIAS-VARIANCE DECOMPOSITION FOR RIDGE / 3

Having obtained the bias and variance of the ridge estimator, we can
decompose its mean squared error as follows:

MSE(θ̂ridge) = ∥Bias(θ̂ridge)∥2
2 + trace

(
Var(θ̂ridge)

)
Comparing MSEs of θ̂ridge and θ̂OLS and using Bias(θ̂OLS) = 0 we find

MSE(θ̂OLS)−MSE(θ̂ridge) = trace
(
Var(θ̂OLS)− Var(θ̂ridge)

)︸ ︷︷ ︸
>0

−∥Bias(θ̂ridge)∥2
2︸ ︷︷ ︸

>0

Since both terms are positive, sign of their diff is a priori undetermined.
Theobald 1974 and Farebrother 1976 prove there always exists some λ∗ > 0

so that
MSE(θ̂OLS)− MSE(θ̂ridge) > 0

Important theoretical result: While Gauss-Markov guarantuees θ̂OLS

is best linear unbiased estimator (BLUE), there are biased estimators
with lower MSE.
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https://www.jstor.org/stable/2984775
https://www.jstor.org/stable/2984971


BIAS-VARIANCE IN PREDICTIONS FOR RIDGE

In supervised learning, our goal is typically not to learn an unknown
parameter θ, but to learn a function f (x) that can predict y given x.

The bias and variance of predictions f̂ := f̂ (x) = θ̂⊤ridgex is obtained as:

Bias(̂f ) = E[̂f − f ] = E[θ̂⊤ridgex − θ⊤x] = E[θ̂ridge − θ]⊤x

= Bias(θ̂ridge)
⊤x

Var(̂f ) = Var(θ̂⊤ridgex) = x⊤Var(θ̂ridge)x

The MSE of f̂ given a fresh sample (y , x) can now be decomposed as

MSE(̂f ) = E[(y − f̂ (x))2] = Bias2(̂f ) + Var(̂f ) + σ2

This decomposition is similar to the statistical inference setting before,
however, the irreducible error σ2 only appears for predictions as an
artifact of the noise in the test sample.
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