Introduction to Machine Learning

Regularization
Perspectives on Ridge Regression
(Deep-Dive)

Learning goals
= @ Bias-Variance trade-off for ridge
regression
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BIAS-VARIANCE DECOMPOSITION FOR RIDGE

For a linear model y = X@ + e with fixed design X
X € R™Pande ~ (0,02l,), bias of ridge estimator yigqe is given by
=E[(X X+ X,)"'XT(X0 +¢€)] -6 X X
=(X"X+XM,) ' XTX0 + (XX + M) "X E[e] -0
=0
=(X"X+ M) 'X"X0 -0
= [(X"X+A,) ' = (xXTX)""| X" X0

@ Last expression shows bias of ridge estimator only vanishes for
A = 0, which is simply (unbiased) OLS solution

o It follows ||Bias(frigge)||3 > 0 for all A > 0
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BIAS-VARIANCE DECOMPOSITION FOR RIDGE /2

For the variance of 9,idge, we have X
Var(rigge) = Var ((XTX - /\Ip)_1XTy> | apply Var,(Au) = AVar(u)A" X
T
= (XTX + M)~ X Var(y) ((XTX + Alp)*‘xT) X X

(XTX 4+ M) "X T Var(e)X(XT X + M)~
XX+ M) XTo21,X(XT X + M)~
XX+ M) XTX(XTX A+ M)

@ Var(frigge) is strictly smaller than Var(foLs) = o2(XTX)~" for any
A > 0, meaning matrix of their difference Var(foLs) — Var(riage) is
positive definite (bit tedious derivation)

e This further means trace (Var(fors) — Var(frigge)) > 0V > 0
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BIAS-VARIANCE DECOMPOSITION FOR RIDGE /3

Having obtained the bias and variance of the ridge estimator, we can
decompose its mean squared error as follows:

MSE(@ridge) = ||Bias(9,idge)||§ + trace(Var(é,idge))
Comparing MSEs of é,idge and fos and using Bias(éoLs) = 0 we find

MSE(éoLs)—MSE(éridge) = trace(Var(éoLs) - Var(éridge)) - HBiaS(é\ridge)Hg

>0 >0

Since both terms are positive, sign of their diff is a priori undetermined.
and prove there always exists some \* > 0
so that A A

MSE(@oLs) — MSE(eridge) >0

Important theoretical result: While Gauss-Markov guarantuees foLs
is best linear unbiased estimator (BLUE), there are biased estimators
with lower MSE.
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https://www.jstor.org/stable/2984775
https://www.jstor.org/stable/2984971

BIAS-VARIANCE IN PREDICTIONS FOR RIDGE

In supervised learning, our goal is typically not to learn an unknown
parameter 6, but to learn a function f(x) that can predict y given x.

The bias and variance of predictions f := ?( X) = Qndge X is obtained as:

Bias(f) = E[f — f] = E[fggeX — 0 ' X] = E[frigge — 6] ' x
= Blas(eridge)Tx
Var(?) Var(9rldge ) = xTVar(éridge)x

The MSE of  given a fresh sample (y, x) can now be decomposed as

MSE() = E[(y — (x))?] = Bias?(f) + Var(f) + o2

This decomposition is similar to the statistical inference setting before,
however, the irreducible error o2 only appears for predictions as an
artifact of the noise in the test sample.
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