
Introduction to Machine Learning

Nonlinear Support Vector Machines
Details on Support Vector Machines

Learning goals
Know that SVMs are non-parameteric
models

Understand the concept of universal
consistency

Know that SVMs with an universal
kernel (e.g. Gaussian kernel) are
universally consistent



SVMs as Non-Parametric Models
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SVMS AS NON-PARAMETRIC MODELS

In contrast to linear models, for an SVM we do not have to decide
the number of coefficients of the decision function before training.

The number of coefficients depends on the size of the dataset, or
on the number of support vectors.

Such models are called non-parametric.

The big advantage of non-parametric models is that their modeling
capacity is not a priori restricted to a finite-dimensional subspace
of a function space.

It turns out that SVMs do even better: There exist kernels so that
an SVM can model all continuous functions arbitrarily well. It is
also known that the SVM learning algorithm can approximate the
Bayes optimal decision function arbitrarily well in the limit of infinite
data.

This property is known as universal consistency.
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SVMS AS NON-PARAMETRIC MODELS / 2

Definition [Steinwart, 2002]: Let X ⊂ Rp be compact. A continuous
kernel k : X × X → R is called universal if the set of all induced
functions

∑
i βik

(
x(i), ·

)
is dense in C(X ); i.e., for all g ∈ C(X ) and all

ε > 0 there exists a function f induced by k with ∥f − g∥∞ ≤ ε.

Example: Gaussian kernels are universal.

Theorem [simplified from Steinwart, 2002]: For compact X ⊂ Rp

define C(n) = C0 · nq−1 for some C0 > 0 and 0 < q < 1/p. Fix any
distribution P on X × {±1} from which i.i.d. datasets Dn of size n are
drawn. Let hn denote the soft-margin SVM model, trained with a
universal kernel and regularization constant C(n) on the data Dn. Then
it holds

lim
n→∞

E[R(hn)] = R∗ ,

where R∗ denotes the Bayes risk.
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ASYMPTOTIC PERFORMANCE

Convergence of the risk to the Bayes risk for all distributions is
called universal consistency.

A universally consistent learning machine can solve all problems
optimally, provided enough data.

Parametric models are too inflexible for this property. They can
model only a finite-dimensional subspace (manifold) of decision
functions.

Thus, in the limit of infinite data, they will systematically underfit.

Universal consistency requires more than infinite-dimensional
modeling power: We also need a learning rule that uses the
flexibility wisely and avoids overfitting.

The existence of universally consistent learners is one of the most
exciting facts from non-parametric statistics.
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ASYMPTOTIC PERFORMANCE / 2

Note the arbitrary positive constant C0 in the definition of
C(n) = C0 · nq−1.

This means that for a single fixed n, C(n) can have any positive
value.

This is not a problem for the theorem since all it requires is that C
changes at the right rate with n:

n · C(n) tends to infinity, which means that the relative impact
of the regularizer compared to the empirical risk decays to
zero, so, the risk term takes over for large n;
The convergence of n ·C(n) to infinity is slow enough to avoid
overfitting (this is far from obvious, but it is in the details of the
proof of the theorem).

Importantly, since C can be arbitrary for fixed n, this theorem does
not tell us which C to use for a given problem size.
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SVM – PRO’S & CON’S

Advantages

Often sparse solution (w.r.t.
observations)

Robust against overfitting
(regularized); especially in
high-dimensional space

Stable solutions (w.r.t.
changes in train data)
→ Non-SV do not affect
decision boundary

Convex optimization problem
→ local minimum =̂ global
minimum

Disadvantages

Long training times
→ O(n2p + n3)

Confined to linear model

Restricted to continuous
features

Optimization can also fail or
get stuck
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SVM – PRO’S & CON’S / 2

Advantages (nonlinear SVM)

Can learn nonlin. decision
boundaries

Very flexible due to custom
kernels
→ RBF kernel yields local
model
→ kernel for time series,
strings etc.

Disadvantages (nonlin. SVM)

Poor interpretability due to
complex kernel

Not easy tunable as it is
highly important to choose the
right kernel (which also
introduces further
hyperparameters)
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Kernels on Infinite-Dimensional Vector
Spaces
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KERNELS ON INFINITE-DIMENSIONAL VECTOR
SPACES

Note that the input space X does not need to be a
finite-dimensional vector space.

X could be the set of all character strings (of unlimited length) or
of graphs, or of trees.

Such data structures are natural representations for, e.g, HTML
documents.

There are many examples of data that do not naturally come in
vector form.

Most often meaningful and cheap-to-compute kernels can be
defined directly on the input data structures – they simply define a
similarity measure over these data.

SVMs (and other kernel methods) allow to learn and predict
directly on these spaces.
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