Introduction to Machine Learning

Nonlinear Support Vector Machines
Reproducing Kernel Hilbert Space and
Representer Theorem
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KERNELS: MERCER’S THEOREM

@ Kernels are symmetric, positive definite functions k : X x & — R.

@ A kernel can be thought of as a shortcut computation for a
two-step procedure: the feature map and the inner product.

Mercer’s theorem says that for every kernel there exists an associated
(well-behaved) feature space where the kernel acts as a dot-product.

@ There exists a Hilbert space ® of continuous functions X — R
(think of it as a vector space with inner product where all operations are
meaningful, including taking limits of sequences; this is non-trivial in the
infinite-dimensional case)

@ and a continuous “feature map” ¢ : X — o,

@ so that the kernel computes the inner product of the features:
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REPRODUCING KERNEL HILBERT SPACE

There are many possible Hilbert spaces and feature maps for the
same kernel, but they are all “equivalent” (isomorphic).

It is often helpful to have a reference space for a kernel k(-, -),
called the reproducing kernel Hilbert space (RKHS).

The feature map of this space is
¢ X —=C(X); x— k(x,-),

where C(X') is the space of continuous functions X — RR. The

"features" of the RKHS are the kernel functions evaluated at an x.

The Hilbert space is the completion of the span of the features:

® = span{¢p(x) |x € X'} C C(X) .
The so-called reproducing property states:

(k(x,-), k(X)) = (¢(x), 6(X)) = k(x, X).
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REPRODUCING KERNEL HILBERT SPACE /2

@ The RKHS provides us with a useful interpretation:
an input x € X’ mapped to the basis function ¢(x) = k(x, -).

@ The kernel maps 2 points and computes the inner product:
(k(x,-), k(X,-)) = k(x,X) .

@ This is best illustrated with the Gaussian kernel.
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REPRODUCING KERNEL HILBERT SPACE /3

@ Caveat: Not all elements of the Hilbert space are of the form
k(x, -) for some x € X'

@ A general element in the span takes the form

izj;a,'k <X(i),'> ceod .

@ A general element in the closure of the span takes the form

()
ga,k<x ,)Ed).

with >, a2 < oco.
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REPRODUCING KERNEL HILBERT SPACE /4
What is (f, g) for two elements X

- (0 S 0) X
— . i, — . Do) 2
f ;a,k(x ,), g ;,@k(x ,)
We use the bilinearity of the inner product:
<,§;aik (x(’>, ) 7§ﬁ1k (x(/), )> ga, <k (x(f)7 ) é;ﬁjk (x(/’)7 >>
- 3o {een) x(e0)

i=1 j=1

n m
= SN gk (x(i), x(/))

i=1 j=1

The kernel defines the inner products of all elements in the span of the
basis functions.
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REPRESENTER THEOREM

The representer theorem tells us that the solution of a support vector
machine problem

1 "
min -0'0+C ()
0.00.0) 2 ,Z;C

sty (<9,¢Ex(’))>+9o)z1—<(’> vie{1,...,n},
and ¢ >0 Vvie{t,...,n}

can be written as

0 = fjﬂ@ (x)
j=1

for 3; € R.
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REPRESENTER THEOREM

Theorem (Representer Theorem):
The solution 8, 6, of the support vector machine optimization problem
fulfills 8 € V = span {¢ (x(),..., ¢ (x() }.

Proof: Let V* denote the space orthogonal to V, so that ® = V @& V. The vector 6
has a unique decomposition into components v € V and v+ € V1, so that

1
v+v- =86.
The regularizer becomes ||8||2 = ||v||® + ||v*||%. The constraints
y (<0, 6 (x<’>)> n eo) > 1 — ¢ do not depend on v+ at all:

<07¢ (x(’))> - <v,<;5 (x('))> + <vﬂ¢(x(°)> vie{1,2,..,n}.

=0

Thus, we have two independent optimization problems, namely the standard SVM
problem for v and the unconstrained minimization problem of || v ||? for v, with

obvious solution vt = 0. Thus, @ = v € V.
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REPRESENTER THEOREM /2

@ Hence, we can restrict the SVM optimization problem to the X
finite-dimensional subspace span {¢ (x() ..., ¢ (x(") }.
Its dimension grows with the size of the training set.

@ More explicitly, we can assume the form

6=>5-¢ (x?)
j=1

for the weight vector 8 € .
@ The SVM prediction on x € X can be computed as

f(x) = Zn:ﬁf (6 (x),6(0) + 0o .

It can be shown that the sum is sparse: 3; = 0 for non-support
vectors.

X X

Introduction to Machine Learning — 8/8



