
Introduction to Machine Learning

Nonlinear Support Vector Machines
Reproducing Kernel Hilbert Space and
Representer Theorem

Learning goals
Know that for every kernel there is an
associated feature map and space
(Mercer’s Theorem)

Know that this feature map is not
unique, and the reproducing kernel
Hilbert space (RKHS) is a reference
space

Know the representation of the
solution of a SVM is given by the
representer theorem



KERNELS: MERCER’S THEOREM

Kernels are symmetric, positive definite functions k : X × X → R.

A kernel can be thought of as a shortcut computation for a
two-step procedure: the feature map and the inner product.

Mercer’s theorem says that for every kernel there exists an associated
(well-behaved) feature space where the kernel acts as a dot-product.

There exists a Hilbert space Φ of continuous functions X → R

(think of it as a vector space with inner product where all operations are
meaningful, including taking limits of sequences; this is non-trivial in the
infinite-dimensional case)

and a continuous “feature map” ϕ : X → Φ,

so that the kernel computes the inner product of the features:

k(x, x̃) = ⟨ϕ(x), ϕ(x̃)⟩ .
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REPRODUCING KERNEL HILBERT SPACE

There are many possible Hilbert spaces and feature maps for the
same kernel, but they are all “equivalent” (isomorphic).

It is often helpful to have a reference space for a kernel k(·, ·),
called the reproducing kernel Hilbert space (RKHS).

The feature map of this space is

ϕ : X → C(X ) ; x 7→ k(x, ·) ,

where C(X ) is the space of continuous functions X → R. The
"features" of the RKHS are the kernel functions evaluated at an x.

The Hilbert space is the completion of the span of the features:

Φ = span{ϕ(x) | x ∈ X} ⊂ C(X ) .

The so-called reproducing property states:

⟨k(x, ·), k(x̃ , ·)⟩ = ⟨ϕ(x), ϕ(x̃)⟩ = k(x, x̃).
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REPRODUCING KERNEL HILBERT SPACE / 2

The RKHS provides us with a useful interpretation:
an input x ∈ X mapped to the basis function ϕ(x) = k(x, ·).
The kernel maps 2 points and computes the inner product:

⟨k(x, ·), k(x̃, ·)⟩ = k(x, x̃) .

This is best illustrated with the Gaussian kernel.
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REPRODUCING KERNEL HILBERT SPACE / 3

Caveat: Not all elements of the Hilbert space are of the form
k(x, ·) for some x ∈ X !

A general element in the span takes the form

n∑
i=1

αik
(

x(i), ·
)
∈ Φ .

A general element in the closure of the span takes the form

∞∑
i=1

αik
(

x(i), ·
)
∈ Φ .

with
∑∞

i=1 α
2
i < ∞.
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REPRODUCING KERNEL HILBERT SPACE / 4

What is ⟨f , g⟩ for two elements

f =
n∑

i=1

αik
(

x(i), ·
)
, g =

m∑
j=1

βjk
(

x(j), ·
)

?

We use the bilinearity of the inner product:〈
n∑

i=1

αik
(

x(i), ·
)
,

m∑
j=1

βjk
(

x(j), ·
)〉

=
n∑

i=1

αi

〈
k
(

x(i), ·
)
,

m∑
j=1

βjk
(

x(j), ·
)〉

=
n∑

i=1

m∑
j=1

αiβj

〈
k
(

x(i), ·
)
, k

(
x(j), ·

)〉
=

n∑
i=1

m∑
j=1

αiβjk
(

x(i), x(j)
)

The kernel defines the inner products of all elements in the span of the
basis functions.
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REPRESENTER THEOREM

The representer theorem tells us that the solution of a support vector
machine problem

min
θ,θ0,ζ(i)

1
2
θ⊤θ + C

n∑
i=1

ζ(i)

s.t. y (i)
(〈

θ, ϕ
(

x(i)
)〉

+ θ0

)
≥ 1 − ζ(i) ∀ i ∈ {1, . . . , n},

and ζ(i) ≥ 0 ∀ i ∈ {1, . . . , n}

can be written as

θ =
n∑

j=1

βjϕ
(

x(j)
)

for βj ∈ R.
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REPRESENTER THEOREM

Theorem (Representer Theorem):
The solution θ, θ0 of the support vector machine optimization problem
fulfills θ ∈ V = span

{
ϕ
(
x(1)

)
, . . . , ϕ

(
x(n)

) }
.

Proof: Let V⊥ denote the space orthogonal to V , so that Φ = V ⊕ V⊥. The vector θ
has a unique decomposition into components v ∈ V and v⊥ ∈ V⊥, so that
v + v⊥ = θ.

The regularizer becomes ∥θ∥2 = ∥v∥2 + ∥v⊥∥2. The constraints

y (i)
(〈

θ, ϕ
(

x(i)
)〉

+ θ0

)
≥ 1 − ζ(i) do not depend on v⊥ at all:〈

θ, ϕ
(

x(i)
)〉

=
〈

v , ϕ
(

x(i)
)〉

+
〈

v⊥, ϕ
(

x(i)
)〉

︸ ︷︷ ︸
=0

∀i ∈ {1, 2, ..., n}.

Thus, we have two independent optimization problems, namely the standard SVM

problem for v and the unconstrained minimization problem of ∥v⊥∥2 for v⊥, with

obvious solution v⊥ = 0. Thus, θ = v ∈ V .
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REPRESENTER THEOREM / 2

Hence, we can restrict the SVM optimization problem to the
finite-dimensional subspace span

{
ϕ
(
x(1)

)
, . . . , ϕ

(
x(n)

) }
.

Its dimension grows with the size of the training set.
More explicitly, we can assume the form

θ =
n∑

j=1

βj · ϕ
(

x(j)
)

for the weight vector θ ∈ Φ.
The SVM prediction on x ∈ X can be computed as

f (x) =
n∑

j=1

βj

〈
ϕ
(

x(j)
)
, ϕ (x)

〉
+ θ0 .

It can be shown that the sum is sparse: βj = 0 for non-support
vectors.
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