
Introduction to Machine Learning

Nonlinear Support Vector Machines
The Kernel Trick

Learning goals
Know how to efficiently introduce
non-linearity via the kernel trick

Know common kernel functions
(linear, polynomial, radial)

Know how to compute predictions of
the kernel SVM



DUAL SVM PROBLEM WITH FEATURE MAP
The dual (soft-margin) SVM is:

maxα

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαj y
(i)y (j)

〈
ϕ
(

x(i)
)
, ϕ

(
x(j)

)〉
s.t. 0 ≤ αi ≤ C,

n∑
i=1

αi y
(i) = 0,

Here we replaced all features x(i) with feature-generated, transformed
versions ϕ(x(i)).

We see: The optimization problem only depends on pair-wise inner
products of the inputs.

This now allows a trick to enable efficient solving.
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KERNEL = FEATURE MAP + INNER PRODUCT

Instead of first mapping the features to the higher-dimensional space
and calculating the inner products afterwards,

x(i) ϕ(x(i))

x(j) ϕ(x(j))

〈
ϕ(x(i)), ϕ(x(j))

〉

it would be nice to have an efficient “shortcut” computation:

x(i)

x(j)

k(x(i), x(j))

We will see: Kernels give us such a “shortcut”.
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MERCER KERNEL

Definition: A (Mercer) kernel on a space X is a continuous function

k : X × X → R

of two arguments with the properties

Symmetry: k(x, x̃) = k(x̃, x) for all x, x̃ ∈ X .

Positive definiteness: For each finite subset
{

x(1), . . . , x(n)
}

the
kernel Gram matrix K ∈ Rn×n with entries Kij = k(x(i), x(j)) is
positive semi-definite.
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CONSTANT AND LINEAR KERNEL

Every constant function taking a non-negative value is a (very
boring) kernel.

An inner product is a kernel. We call the standard inner product
k(x, x̃) = x⊤x̃ the linear kernel. This is simply our usual linear
SVM as discussed.
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SUM AND PRODUCT KERNELS

A kernel can be constructed from other kernels k1 and k2:

For λ ≥ 0, λ · k1 is a kernel.

k1 + k2 is a kernel.

k1 · k2 is a kernel (thus also kn
1 ).

The proofs remain as (simple) exercises.
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POLYNOMIAL KERNEL

k(x, x̃) = (x⊤x̃ + b)d , for b ≥ 0, d ∈ N

From the sum-product rules it directly follows that this is a kernel.
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RBF KERNEL

The “radial” Gaussian kernel is defined as

k(x, x̃) = exp(−∥x − x̃∥2

2σ2 )

or
k(x, x̃) = exp(−γ∥x − x̃∥2), γ > 0
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KERNEL SVM

We kernelize the dual (soft-margin) SVM problem by replacing all inner
products

〈
ϕ
(
x(i)

)
, ϕ

(
x(j)

)〉
by kernels k(x(i), x(j))

maxα

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjy (i)y (j)
〈
ϕ
(

x(i)
)
, ϕ

(
x(j)

)〉
s.t. 0 ≤ αi ≤ C,

n∑
i=1

αiy (i) = 0.

This problem is still convex because K is psd!
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n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjy (i)y (j)k(x(i), x(j))

s.t. 0 ≤ αi ≤ C,
n∑

i=1

αiy (i) = 0.

In more compact matrix notation with K denoting the kernel matrix:
max
α∈Rn

1⊤α− 1
2
α⊤ diag(y)K diag(y)α

s.t. α⊤y = 0,

0 ≤ α ≤ C.

This problem is still convex because K is psd!
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KERNEL SVM: PREDICTIONS

For the linear soft-margin SVM we had:

f (x) = θ̂T x + θ0 and θ̂ =
n∑

i=1

αiy (i)x(i)

After the feature map this becomes:

f (x) =
〈
θ̂, ϕ(x)

〉
+ θ0 and θ̂ =

n∑
i=1

αiy (i)ϕ(x(i))

Assuming that the dot-product still follows its bi-linear rules in the
mapped space and using the kernel trick again:〈
θ̂, ϕ(x)

〉
=

〈
n∑

i=1

αiy (i)ϕ(x(i)), ϕ(x)

〉
=

n∑
i=1

αiy (i)
〈
ϕ(x(i)), ϕ(x)

〉
=

=
n∑

i=1

αiy (i)k(x(i), x), so: f (x) =
n∑

i=1

αiy (i)k(x(i), x) + θ0
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MNIST EXAMPLE

Through this kernelization we can now conveniently perform
feature generation even for higher-dimensional data. Actually, this
is how we computed all previous examples, too.
We again consider MNIST with 28 × 28 bitmaps of gray values.

A polynomial kernel extracts
(

d + p
d

)
− 1 features and for the

RBF kernel the dimensionality would be infinite.
We train SVMs again on 700 observations of the MNIST data set
and use the rest of the data for testing; and use C=1.

Error
linear 0.134

poly (d = 2) 0.119
RBF (gamma = 0.001) 0.12

RBF (gamma = 1) 0.184
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FINAL COMMENTS

The kernel trick allows us to make linear machines non-linear in a
very efficient manner.

Linear separation in high-dimensional spaces is very flexible.

Learning takes place in the feature space, while predictions are
computed in the input space.

Both the polynomial and Gaussian kernels can be computed in
linear time. Computing inner products of features is much faster
than computing the features themselves.

What if a good feature map ϕ is already available? Then this
feature map canonically induces a kernel by defining
k(x, x̃) = ⟨ϕ(x), ϕ(x̃)⟩. There is no problem with an explicit feature
representation as long as it is efficiently computable.
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