Introduction to Machine Learning

Nonlinear Support Vector Machines The Kernel Trick

X X

Learning goals

- Know how to efficiently introduce non-linearity via the kernel trick
- Know common kernel functions (linear, polynomial, radial)
- Know how to compute predictions of the kernel SVM

DUAL SVM PROBLEM WITH FEATURE MAP

The dual (soft-margin) SVM is:

$$
\begin{aligned}\n\max_{\alpha} & \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y^{(i)} y^{(j)} \left\langle \phi \left(\mathbf{x}^{(i)} \right), \phi \left(\mathbf{x}^{(j)} \right) \right\rangle \\
\text{s.t.} & & 0 \le \alpha_i \le C, \\
& \sum_{i=1}^{n} \alpha_i y^{(i)} = 0,\n\end{aligned}
$$

 \times \times

Here we replaced all features **x** (*i*) with feature-generated, transformed versions $\phi(\mathbf{x}^{(i)})$.

We see: The optimization problem only depends on **pair-wise inner products** of the inputs.

This now allows a trick to enable efficient solving.

KERNEL = FEATURE MAP + INNER PRODUCT

Instead of first mapping the features to the higher-dimensional space and calculating the inner products afterwards,

it would be nice to have an efficient "shortcut" computation:

We will see: **Kernels** give us such a "shortcut".

MERCER KERNEL

Definition: A **(Mercer) kernel** on a space X is a continuous function

$$
k:\mathcal{X}\times\mathcal{X}\to\mathbb{R}
$$

of two arguments with the properties

- **●** Symmetry: $k(\mathbf{x}, \tilde{\mathbf{x}}) = k(\tilde{\mathbf{x}}, \mathbf{x})$ for all $\mathbf{x}, \tilde{\mathbf{x}} \in \mathcal{X}$.
- Positive definiteness: For each finite subset $\{x^{(1)}, \ldots, x^{(n)}\}$ the **kernel Gram matrix** $\boldsymbol{K} \in \mathbb{R}^{n \times n}$ **with entries** $\mathcal{K}_{ij} = \mathcal{k}(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$ **is** positive semi-definite.

 $\overline{\mathbf{X}}$

CONSTANT AND LINEAR KERNEL

- Every constant function taking a non-negative value is a (very boring) kernel.
- An inner product is a kernel. We call the standard inner product $k(\mathbf{x}, \tilde{\mathbf{x}}) = \mathbf{x}^\top \tilde{\mathbf{x}}$ the **linear kernel**. This is simply our usual linear SVM as discussed.

SUM AND PRODUCT KERNELS

A kernel can be constructed from other kernels k_1 and k_2 :

- For $\lambda \geq 0$, $\lambda \cdot k_1$ is a kernel.
- $k_1 + k_2$ is a kernel.
- $k_1 \cdot k_2$ is a kernel (thus also k_1^n).

The proofs remain as (simple) exercises.

POLYNOMIAL KERNEL

X

From the sum-product rules it directly follows that this is a kernel.

RBF KERNEL

The "radial" **Gaussian kernel** is defined as

$$
k(\mathbf{x}, \tilde{\mathbf{x}}) = \exp(-\frac{\|\mathbf{x} - \tilde{\mathbf{x}}\|^2}{2\sigma^2})
$$

 $k(\mathbf{x}, \tilde{\mathbf{x}}) = \text{exp}(-\gamma \|\mathbf{x} - \tilde{\mathbf{x}}\|^2), \; \gamma > 0$

X X X

 $1.25 1.00 -$ 1.00 $\tilde{\mathbf{x}}$ $\sum_{\tau=0.50}^{\infty}$
 $\sum_{\tau=0.50}^{\infty}$
 $\sum_{\tau=0.25}^{\infty}$ $2 \blacktriangle$ 0.75 v \mathbf{x}^2 $r = ||x - \tilde{x}||^2$ x^0 0 0.50 A $0.25 -2$ 0.00 $0.00 + 0.0$ 1.5 $\overline{2.0}$ $\mathbf{0}$ $\overline{\mathbf{2}}$ 0.5 1.0 -4 -2 $\ddot{\mathbf{0}}$ $\overline{2}$ \overline{A} $\ddot{\mathbf{6}}$ \mathbf{x}_1 \mathbf{x}_1 \mathbf{r}

or

KERNEL SVM

We kernelize the dual (soft-margin) SVM problem by replacing all inner products $\langle \phi\left(\mathbf{x}^{(i)}\right), \phi\left(\mathbf{x}^{(j)}\right) \rangle$ by kernels $k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$

$$
\max_{\alpha} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y^{(i)} y^{(j)} \Big\langle \phi \left(\mathbf{x}^{(i)} \right), \phi \left(\mathbf{x}^{(j)} \right) \Big\rangle
$$

s.t. $0 \le \alpha_i \le C$,

$$
\sum_{i=1}^{n} \alpha_i y^{(i)} = 0.
$$

This problem is still convex because *K* is psd!

KERNEL SVM

We kernelize the dual (soft-margin) SVM problem by replacing all inner products $\langle \phi\left(\mathbf{x}^{(i)}\right), \phi\left(\mathbf{x}^{(j)}\right) \rangle$ by kernels $k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$

$$
\max_{\alpha} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y^{(i)} y^{(j)} k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})
$$

s.t.
$$
0 \leq \alpha_i \leq C,
$$

$$
\sum_{i=1}^{n} \alpha_i y^{(i)} = 0.
$$

 \times \times

This problem is still convex because *K* is psd!

KERNEL SVM

We kernelize the dual (soft-margin) SVM problem by replacing all inner products $\langle \phi\left(\mathbf{x}^{(i)}\right), \phi\left(\mathbf{x}^{(j)}\right) \rangle$ by kernels $k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$

$$
\max_{\alpha} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y^{(i)} y^{(j)} k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})
$$

s.t. $0 \le \alpha_i \le C$,

$$
\sum_{i=1}^{n} \alpha_i y^{(i)} = 0.
$$

 \times \times

In more compact matrix notation with **K** denoting the kernel matrix:
 $\begin{bmatrix} 1 & \cdots & 1 \end{bmatrix}^T$

$$
\max_{\alpha \in \mathbb{R}^n} \mathbf{1}^\top \alpha - \frac{1}{2} \alpha^\top \operatorname{diag}(\mathbf{y}) \mathbf{K} \operatorname{diag}(\mathbf{y}) \alpha
$$

s.t. $\alpha^\top \mathbf{y} = 0$,
 $0 \le \alpha \le C$.

This problem is still convex because *K* is psd!

KERNEL SVM: PREDICTIONS

For the linear soft-margin SVM we had:

$$
f(\mathbf{x}) = \hat{\theta}^T \mathbf{x} + \theta_0
$$
 and $\hat{\theta} = \sum_{i=1}^n \alpha_i y^{(i)} \mathbf{x}^{(i)}$

After the feature map this becomes:

$$
f(\mathbf{x}) = \langle \hat{\theta}, \phi(\mathbf{x}) \rangle + \theta_0
$$
 and $\hat{\theta} = \sum_{i=1}^n \alpha_i y^{(i)} \phi(\mathbf{x}^{(i)})$

Assuming that the dot-product still follows its bi-linear rules in the mapped space and using the kernel trick again:

$$
\left\langle \hat{\theta}, \phi(\mathbf{x}) \right\rangle = \left\langle \sum_{i=1}^{n} \alpha_i y^{(i)} \phi(\mathbf{x}^{(i)}), \phi(\mathbf{x}) \right\rangle = \sum_{i=1}^{n} \alpha_i y^{(i)} \left\langle \phi(\mathbf{x}^{(i)}), \phi(\mathbf{x}) \right\rangle =
$$

$$
= \sum_{i=1}^{n} \alpha_i y^{(i)} k(\mathbf{x}^{(i)}, \mathbf{x}), \qquad \text{so:} \qquad f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i y^{(i)} k(\mathbf{x}^{(i)}, \mathbf{x}) + \theta_0
$$

MNIST EXAMPLE

- Through this kernelization we can now conveniently perform feature generation even for higher-dimensional data. Actually, this is how we computed all previous examples, too.
- We again consider MNIST with 28 \times 28 bitmaps of gray values.
- A polynomial kernel extracts $\begin{pmatrix} d+p \end{pmatrix}$ *d* $\big)$ – 1 features and for the RBF kernel the dimensionality would be infinite.
- We train SVMs again on 700 observations of the MNIST data set and use the rest of the data for testing; and use C=1.

 $\overline{\mathbf{X}}$

FINAL COMMENTS

- The kernel trick allows us to make linear machines non-linear in a very efficient manner.
- Linear separation in high-dimensional spaces is **very flexible**.
- Learning takes place in the feature space, while predictions are computed in the input space.
- Both the polynomial and Gaussian kernels can be computed in linear time. Computing inner products of features is **much faster** than computing the features themselves.
- What if a good feature map ϕ is already available? Then this feature map canonically induces a kernel by defining $k(\mathbf{x}, \tilde{\mathbf{x}}) = \langle \phi(\mathbf{x}), \phi(\tilde{\mathbf{x}}) \rangle$. There is no problem with an explicit feature representation as long as it is efficiently computable.

