Introduction to Machine Learning

Nonlinear Support Vector Machines
The Kernel Trick

Learning goals

@ Know how to efficiently introduce
non-linearity via the kernel trick
. m @ Know common kernel functions
(linear, polynomial, radial)

@ Know how to compute predictions of
the kernel SVM

X X

DUAL SVM PROBLEM WITH FEATURE MAP
The dual (soft-margin) SVM is:

. Zoa—fZZOW y < (w) ¢(x(n)>

i=1 j=1
sit. oga,gc,

n P
> o =0,
=1

Here we replaced all features x() with feature-generated, transformed
versions ¢(x()).

We see: The optimization problem only depends on pair-wise inner
products of the inputs.

This now allows a trick to enable efficient solving.

Introduction to Machine Learning — 1/ 11

X X

KERNEL = FEATURE MAP + INNER PRODUCT

Instead of first mapping the features to the higher-dimensional space
and calculating the inner products afterwards,
x() —> p(x()
<¢(x<i))7 ¢(x(/))>
/

x0) —> p(x0))

it would be nice to have an efficient “shortcut” computation:

\
R

x0)
K(x),x())

x)

We will see: Kernels give us such a “shortcut”.

Introduction to Machine Learning — 2/ 11

MERCER KERNEL

Definition: A (Mercer) kernel on a space X is a continuous function
k:XxX—>R

of two arguments with the properties
@ Symmetry: k(x, X) = k(X,x) for all x,x € X.
e Positive definiteness: For each finite subset {x(V), ..., x("} the

kernel Gram matrix K € R™" with entries Kj = k(x(),x1)) is
positive semi-definite.

Introduction to Machine Learning — 3/ 11

X X

CONSTANT AND LINEAR KERNEL

@ Every constant function taking a non-negative value is a (very
boring) kernel.

@ Aninner product is a kernel. We call the standard inner product
k(x,%X) = x "X the linear kernel. This is simply our usual linear
SVM as discussed.

2 A
A y
S0 A ® ® ® . . B -
A A 1
2 A
A
0 2 4 6

X1

Introduction to Machine Learning — 4/ 11

X X

SUM AND PRODUCT KERNELS

A kernel can be constructed from other kernels ki and ko:
@ For A > 0, A ky is a kernel.
@ ki + ko is a kernel.
@ ki - ko is a kernel (thus also k7).

The proofs remain as (simple) exercises.

Introduction to Machine Learning — 5/ 11

X X

POLYNOMIAL KERNEL

O 0OX
k(x,%) = (x "X+ b)? forb>0,d € N
d=2 d=3 X O

p X X

2 A 2
A y A
X 0 A ° .1>‘<“0A -1
A A 1 A 1
2 A 2
A
0 2 4 6 0 2 4 6
X4 X4

From the sum-product rules it directly follows that this is a kernel.

Introduction to Machine Learning — 6/ 11

RBF KERNEL

The “radial” Gaussian kernel is defined as

or
K(x, &) = exp(—[x — &[[2), v > 0
y X) = exp{—=7 y Y
1.25
1.00
A
1.00
7\ ~ 075 2 A
o
075
03 % ;050 ¥
x r=|x=XxI|| b R0 A E
050 = 1
%3 A
® 025
025 5 A
0.00 A
0.00
00 05 10 15 20 4 2 0 2 4 0 2 4 6
X1 r X1

Introduction to Machine Learning — 7/ 11

KERNEL SVM

We kernelize the dual (soft-margin) SVM problem by replacing all inner
products (¢ (x() , ¢ (x1))) by kernels k(x(), x1)

e Za:—*zzmﬂ’(y(/< (()) ¢<x(/’)>>

i=1 j=1
s.t. oga,gc,

n .
S ayl =0,
i=1

This problem is still convex because K is psd!

Introduction to Machine Learning — 8/ 11

X X

KERNEL SVM

We kernelize the dual (soft-margin) SVM problem by replacing all inner
products (¢ (x() , ¢ (x1))) by kernels k(x(), x1)

maxq, Za,—fzzaay()ymk M), x0)

i=1 j=1
s.t. oga,gc,

n »
S ay® =0,
i=1

This problem is still convex because K is psd!

Introduction to Machine Learning — 8/ 11

X X

KERNEL SVM

We kernelize the dual (soft-margin) SVM problem by replacing all inner
products (¢ (x() , ¢ (x1))) by kernels k(x(), x1)

n n n
1 N N
maxe, ; ai— g ; ; iy Dy k(xD %0y
st. 0<aq;<C,

n 3
E a,-y(’) =0.
i=1

In more compact matrix notation with K denoting the kernel matrix:

)
T 0 T 4 .
max 1« 50 diag(y)K diag(y)a

s.t. aTy:O,
0<a<C.

This problem is still convex because K is psd!

Introduction to Machine Learning — 8/ 11

X X

KERNEL SVM: PREDICTIONS

For the linear soft-margin SVM we had:

n
f(X) = éTx + 00 and é = Z aiy(i)x(i)
i=1

After the feature map this becomes:
n
f(X) = <é) ¢(X)> + 90 and é\ = Z aly(’)¢(x(’))
i=1

Assuming that the dot-product still follows its bi-linear rules in the
mapped space and using the kernel trick again:

<é’ > <Za:y o(x) > Za,y(><)Y, b(x)>:

= Z aiyDk(x, x), so: f(x) = Z aiyDk(xD x) + 0,
i=1

i=1

Introduction to Machine Learning — 9/ 11

X X

MNIST EXAMPLE

@ Through this kernelization we can now conveniently perform
feature generation even for higher-dimensional data. Actually, this
is how we computed all previous examples, too.

@ We again consider MNIST with 28 x 28 bitmaps of gray values.

@ A polynomial kernel extracts (

d+p

d

— 1 features and for the

RBF kernel the dimensionality would be infinite.
@ We train SVMs again on 700 observations of the MNIST data set
and use the rest of the data for testing; and use C=1.

0000008000
ASSRZIRAE
222222322722
3333235333
YA rHQE LY
SsrSrcsSss
6666066606
77%1277771
FP85989857
1997993998

\ Error

2N UL WN~NO
SN AW~
SO MARNW NS
NN e et -0

linear | 0.134
poly (d=2) | 0.119

RBF (gamma = 0.001) | 0.12

RBF (gamma=1) | 0.184

Introduction to Machine Learning — 10/ 11

X X

FINAL COMMENTS

@ The kernel trick allows us to make linear machines non-linear in a
very efficient manner.

@ Linear separation in high-dimensional spaces is very flexible.

@ Learning takes place in the feature space, while predictions are
computed in the input space.

@ Both the polynomial and Gaussian kernels can be computed in
linear time. Computing inner products of features is much faster
than computing the features themselves.

@ What if a good feature map ¢ is already available? Then this
feature map canonically induces a kernel by defining
k(x,X) = (¢(x), ¢(X)). There is no problem with an explicit feature
representation as long as it is efficiently computable.

Introduction to Machine Learning — 11/ 11

X X

