Introduction to Machine Learning

Nonlinear Support Vector Machines
The Kernel Trick

Learning goals

@ Know how to efficiently introduce
non-linearity via the kernel trick
. m @ Know common kernel functions
(linear, polynomial, radial)

@ Know how to compute predictions of
the kernel SVM
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DUAL SVM PROBLEM WITH FEATURE MAP
The dual (soft-margin) SVM is:
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Here we replaced all features x() with feature-generated, transformed
versions ¢(x()).

We see: The optimization problem only depends on pair-wise inner
products of the inputs.

This now allows a trick to enable efficient solving.
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KERNEL = FEATURE MAP + INNER PRODUCT

Instead of first mapping the features to the higher-dimensional space
and calculating the inner products afterwards,
x() —> p(x()
<¢(x<i))7 ¢(x(/))>
/

x0) —> p(x0))

it would be nice to have an efficient “shortcut” computation:
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We will see: Kernels give us such a “shortcut”.
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MERCER KERNEL

Definition: A (Mercer) kernel on a space X is a continuous function
k:XxX—>R

of two arguments with the properties
@ Symmetry: k(x, X) = k(X,x) for all x,x € X.
e Positive definiteness: For each finite subset {x(V), ..., x("} the

kernel Gram matrix K € R™" with entries Kj = k(x(),x1)) is
positive semi-definite.
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CONSTANT AND LINEAR KERNEL

@ Every constant function taking a non-negative value is a (very
boring) kernel.

@ Aninner product is a kernel. We call the standard inner product
k(x,%X) = x "X the linear kernel. This is simply our usual linear
SVM as discussed.

2 A
A y
S0 A ® ® ® . . B -
A A 1
2 A
A
0 2 4 6

X1

Introduction to Machine Learning — 4/ 11

X X



SUM AND PRODUCT KERNELS

A kernel can be constructed from other kernels ki and ko:
@ For A > 0, A ky is a kernel.
@ ki + ko is a kernel.
@ ki - ko is a kernel (thus also k7).

The proofs remain as (simple) exercises.
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POLYNOMIAL KERNEL
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From the sum-product rules it directly follows that this is a kernel.
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RBF KERNEL

The “radial” Gaussian kernel is defined as

or
K(x, &) = exp(—[x — &[[2), v > 0
y X) = exp{—=7 y Y
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KERNEL SVM

We kernelize the dual (soft-margin) SVM problem by replacing all inner
products (¢ (x() , ¢ (x1))) by kernels k(x(), x1)
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This problem is still convex because K is psd!
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KERNEL SVM

We kernelize the dual (soft-margin) SVM problem by replacing all inner
products (¢ (x() , ¢ (x1))) by kernels k(x(), x1)
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KERNEL SVM

We kernelize the dual (soft-margin) SVM problem by replacing all inner
products (¢ (x() , ¢ (x1))) by kernels k(x(), x1)
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In more compact matrix notation with K denoting the kernel matrix:

)
T 0 T 4 .
max 1« 50 diag(y)K diag(y)a

s.t. aTy:O,
0<a<C.

This problem is still convex because K is psd!
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KERNEL SVM: PREDICTIONS

For the linear soft-margin SVM we had:

n
f(X) = éTx + 00 and é = Z aiy(i)x(i)
i=1

After the feature map this becomes:
n
f(X) = <é) ¢(X)> + 90 and é\ = Z aly(’)¢(x(’))
i=1

Assuming that the dot-product still follows its bi-linear rules in the
mapped space and using the kernel trick again:

<é’ > <Za:y o(x) > Za,y(>< )Y, b(x )>:

= Z aiyDk(x, x), so: f(x) = Z aiyDk(xD x) + 0,
i=1

i=1
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MNIST EXAMPLE

@ Through this kernelization we can now conveniently perform
feature generation even for higher-dimensional data. Actually, this
is how we computed all previous examples, too.

@ We again consider MNIST with 28 x 28 bitmaps of gray values.

@ A polynomial kernel extracts (

d+p

d

— 1 features and for the

RBF kernel the dimensionality would be infinite.
@ We train SVMs again on 700 observations of the MNIST data set
and use the rest of the data for testing; and use C=1.
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linear | 0.134
poly (d=2) | 0.119

RBF (gamma = 0.001) | 0.12

RBF (gamma=1) | 0.184
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FINAL COMMENTS

@ The kernel trick allows us to make linear machines non-linear in a
very efficient manner.

@ Linear separation in high-dimensional spaces is very flexible.

@ Learning takes place in the feature space, while predictions are
computed in the input space.

@ Both the polynomial and Gaussian kernels can be computed in
linear time. Computing inner products of features is much faster
than computing the features themselves.

@ What if a good feature map ¢ is already available? Then this
feature map canonically induces a kernel by defining
k(x,X) = (¢(x), ¢(X)). There is no problem with an explicit feature
representation as long as it is efficiently computable.
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