
Introduction to Machine Learning

Nonlinear Support Vector Machines
The Gaussian RBF Kernel

Learning goals
Know the Gaussian (RBF) kernel

Understand that all data sets are
separable with this kernel

Understand the effect of the kernel
hyperparameter σ



RBF KERNEL

The “radial” Gaussian kernel is defined as

k(x, x̃) = exp(−∥x − x̃∥2

2σ2 ) or k(x, x̃) = exp(−γ∥x − x̃∥2)

A straightforward extension is

k(x, x̃) = exp
(
− (x − x̃)T C(x − x̃)

)
for a symmetric, positive definite matrix C.
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RBF KERNEL / 2

With a Gaussian kernel, all RKHS basis functions ϕ(x) = k(x, ·)
are linearly independent - which we will not prove here.

This means that all (finite) data sets are linearly separable!

Do we then need soft-margin machines? The answer is “yes”. The
roles of the nonlinear feature map and the soft-margin constraints
are very different:

The purpose of the kernel (and its feature map) is to make
learning “easy”.
Even in an infinite-dimensional feature space we may want
some margin violators because we should not trust noisy
data. A hard-margin SVM with Gaussian kernels may be able
to separate any dataset but will usually overfit.
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WEIGHTED MIXTURE OF GAUSSIANS

Via the RKHS / basis function intuition we can understand the effect of
the RBF kernel much better as a local model.

f (x) =
n∑

i=1

αiy (i)k(x(i), x) + θ0

All support vectors are assigned
RBF "bumps", these are weighted
with the dual variables / Lagrange
multipliers αi and labels y (i). We
then "mix" these bumps together
to form the decision score function.
Which becomes a bumpy surface.
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RBF KERNEL WIDTH

A large σ (or a small γ) will make the decision boundary very smooth
and in the limit almost linear.
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RBF KERNEL WIDTH / 2

A small σ parameter makes the function more “wiggly”, in the limit we
totally over fit the data by basically modelling each training data point -
and maximal uncertainty at all other test points.
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