Introduction to Machine Learning

Nonlinear Support Vector Machines
The Gaussian RBF Kernel

Learning goals
@ Know the Gaussian (RBF) kernel

@ Understand that all data sets are
separable with this kernel

@ Understand the effect of the kernel
hyperparameter o
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RBF KERNEL

The “radial” Gaussian kernel is defined as
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k(x,X) = exp( =

) or k(x,%) = exp(—7[x — X|°)
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A straightforward extension is
k(x,%) = exp (— (x — %) C(x — X))

for a symmetric, positive definite matrix C.
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RBF KERNEL /2

@ With a Gaussian kernel, all RKHS basis functions ¢(x) = k(x, -)
are linearly independent - which we will not prove here.

@ This means that all (finite) data sets are linearly separable!

@ Do we then need soft-margin machines? The answer is “yes”. The
roles of the nonlinear feature map and the soft-margin constraints
are very different:

e The purpose of the kernel (and its feature map) is to make
learning “easy”.

e Even in an infinite-dimensional feature space we may want
some margin violators because we should not trust noisy
data. A hard-margin SVM with Gaussian kernels may be able
to separate any dataset but will usually overfit.
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WEIGHTED MIXTURE OF GAUSSIANS

Via the RKHS / basis function intuition we can understand the effect of O O X
the RBF kernel much better as a local model.

f(x) = > aiyD(x?, x) + 6
i=1

X X

All support vectors are assigned
RBF "bumps", these are weighted
with the dual variables / Lagrange
multipliers a; and labels . We
then "mix" these bumps together
to form the decision score function.
Which becomes a bumpy surface.
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RBF KERNEL WIDTH

A large o (or a small ) will make the decision boundary very smooth
and in the limit almost linear.

svm: kernel=radial; cost=1; gamma=0.01 svm: kernel=radial; cost=1; gamma=0.08
Train: mmce=0.0800000; CV: mmce.test.mean=0.1100000  Train: mmce=0.4766667; CV: mmce.test. mean=0.490(
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RBF KERNEL WIDTH /2

A small o parameter makes the function more “wiggly”, in the limit we
totally over fit the data by basically modelling each training data point -
and maximal uncertainty at all other test points.

svm: kernel=radial; cost=1; gamma=100 svm: kernel=radial; cost=1; gamma=10
Train: mmce=0.0000000; CV: mmce.test mean=0.3100000  Train: mmce=0.0466667; CV: mmce.test. mean=0.096¢
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