
Introduction to Machine Learning

Nonlinear Support Vector Machines
The Polynomial Kernel

Learning goals
Know the homogeneous and
non-homogeneous polynomial kernel

Understand the influence of the
choice of the degree on the decision
boundary



HOMOGENEOUS POLYNOMIAL KERNEL

k(x, x̃) = (xT x̃)d , for d ∈ N

The feature map contains all monomials of exactly order d .

ϕ(x) =

(√(
d

k1, . . . , kp

)
xk1

1 . . . xkp
p

)
ki≥0,

∑
i ki=d

That ⟨ϕ(x), ϕ(x̃)⟩ = k(x, x̃) holds can easily be checked by simple
calculation and using the multinomial formula

(x1 + . . .+ xp)
d =

∑
ki≥0,

∑
i ki=d

(
d

k1, . . . , kp

)
xk1

1 . . . xkp
p

The map ϕ(x) has
(

p + d − 1
d

)
dimensions. We see that ϕ(x)

contains no terms of "lesser" order, so, e.g., linear effects. As an
example for p = d = 2: ϕ(x) = (x2

1 , x
2
2 ,
√

2x1x2).
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NONHOMOGENEOUS POLYNOMIAL KERNEL

k(x, x̃) = (xT x̃ + b)d , for b ≥ 0, d ∈ N

The maths is very similar as before, we kind of add a further constant term in
the original space, with

(xT x̃ + b)d = (x1x̃1 + . . .+ xpx̃p + b)d

The feature map contains all monomials up to order d .

ϕ(x) =

(√(
d

k1, . . . , kp+1

)
xk1

1 . . . xkp
p bkp+1/2

)
ki≥0,

∑
i ki=d

The map ϕ(x) has
(

p + d
d

)
dimensions. For p = d = 2:

(x1x̃1 + x2x̃2 + b)2 = x2
1 x̃2

1 + x2
2 x̃2

2 + 2x1x2x̃1x̃2 + 2bx1x̃1 + 2bx2x̃2 + b2

Therefore,
ϕ(x) = (x2

1 , x
2
2 ,
√

2x1x2,
√

2bx1,
√

2bx2, b)
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POLYNOMIAL KERNEL

Degree d = 1 yields a linear decision boundary.
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POLYNOMIAL KERNEL / 2

The higher the degree, the more nonlinearity in the decision boundary.
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POLYNOMIAL KERNEL / 3

The higher the degree, the more nonlinearity in the decision boundary.

© Introduction to Machine Learning – 5 / 6



POLYNOMIAL KERNEL / 4

For k(x, x̃) = (x⊤x̃ + 0)d we get no lower order effects.
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