Introduction to Machine Learning

Nonlinear Support Vector Machines
Feature Generation for Nonlinear
Separation

Learning goals

@ Understand how nonlinearity can be
introduced via feature maps in SVMs

@ Know the limitation of feature maps
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NONLINEARITY VIA FEATURE MAPS

@ How to extend a linear classifier, e.g. the SVM, to nonlinear
separation between classes?

@ We could project the data from 2D into a richer 3D feature space!
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NONLINEARITY VIA FEATURE MAPS /2

In order to “lift” the data points into a higher dimension, we have to find
a suitable feature map ¢ : X — ®. Let us consider another example
where the classes lie on two concentric circles:
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NONLINEARITY VIA FEATURE MAPS /3

We apply the feature map ¢(x1, X2) = (x1, X2, X2 + x3) to map our
points into a 3D space. Now our data can be separated by a
hyperplane.
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NONLINEARITY VIA FEATURE MAPS /4

The hyperplane learned in ® C IR? yields a nonlinear decision
boundary when projected back to X = R2.
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FEATURE MAPS: COMPUTATIONAL LIMITATIONS

Let us have a look at a similar nonlinear feature map ¢ : R — RS,
where we collect all monomial feature extractors up to degree 2
(pairwise interactions and quadratic effects):

o(x1, %) = (X2, X2, x1 X2, X1, X2).

For p features vectors, there are kq different monomials where the
degree is exactly d, and k different monomials up to degree d.
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Which is quite a lot, if p is large.
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FEATURE MAPS: COMPUTATIONAL LIMITATIONS
/2

Let us see how well we can classify the 28 x 28-pixel images of the handwritten digits
of the MNIST dataset (70K observations across 10 classes). We use SVM with a
nonlinear feature map which projects the images to a space of all monomials up to the
degree d and C = 1:
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For this scenario, with increasing degree d the test mmce decreases.

NB: We handle the multiclass task with the "one-against-one" approach. We are
somewhat lazy and only use 700 observations to train (rest for testing). We do not do
any tuning - as we always should for the SVM!
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FEATURE MAPS: COMPUTATIONAL LIMITATIONS

/3

However, even a 16 x 16-pixel input image results in infeasible
dimensions for our extracted features (monomials up to degree d).
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FEATURE MAPS: COMPUTATIONAL LIMITATIONS
/4

In this case, training classifiers like a linear SVM via dataset
transformations will incur serious computational and memory
problems.

Are we at a “dead end”?
Answer: No, this is why kernels exist!
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